📄 emi.m
字号:
% Same as em, but initializes mixture parameters to random values instead of
% requiring them as inputs. Requires an input parameter K that specifies the
% desired number of mixture components. Also returns the initial values.
function [p, m, sigma, pkn, niter, p0, m0, sigma0] = emi(x, K, tol, maxiter)
if nargin < 3
tol = [];
end
if nargin < 4
maxiter = [];
end
% Centroid of all the data points
m0 = colmean(x')';
% Standard deviation in each
sigma0 = colstd(x')';
oK = ones(1, K);
% K initial means somewhere within the cloud of data points
m0 = m0 * oK + sigma0 * randn(1, K);
% K standard deviations
sigma0 = mean(sigma0) * oK;
% Note: we can probably do better for both m and sigma by estimating
% expected distances between K points in D dimensions
% K initial mixing probabilities
p0 = oK / K;
% Run the EM algorithm
[p, m, sigma, pkn, niter] = em(x, p0, m0, sigma0, tol, maxiter);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -