📄 polytime.m
字号:
%==========================================================================
% polytime.m
%
%POLYTIME CODE T1-T4
%
clear all;
clc;
disp('*********************************************');
disp('************POLYTIME CODE (T1-T4)************');
disp('*********************************************');
%--------------------------------------------------------------------------
%DEFAULT VARIABLES
%--------------------------------------------------------------------------
A=1; % Amplitude of CW
f=1e3; % Carrier frequency
fs=7e3; % Sample rate
SNR_dB = 0; % Signal to noise ratio
scale=30; % Scaling for plotting time domain graphs
m=2; % Number of phase states
SAR=ceil(fs/f); % Sampling rate
k=4; % Number of stepped frequency segments
T=16e-3; % Overall code period
Ts=1/(fs); % Sampling period
deltaphi=2*pi/m; % Fundamental stepsize
deltaf=250; % Modulation bandwidth
%--------------------------------------------------------------------------
% NEW INPUT IF NEEDED
%--------------------------------------------------------------------------
newvar = 1;
while newvar == 1;
disp(' ')
disp('WHICH PARAMETER DO YOU WANT TO SET ? ')
disp(' ')
fprintf('1. Amplitude of the carrier signal - A= %g.\n', A)
fprintf('2. Carrier frequency - f (Hz) = %g.\n', f)
fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs)
fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB)
fprintf('5. Number of phase states - n = %g.\n', m)
fprintf('6. Number of segments - k = %g.\n', k)
fprintf('7. Modulation Bandwidth - df (Hz)= %g.\n', deltaf)
fprintf('8. Overall Code period - T (s)= %g.\n', T)
fprintf('9. No changes\n')
disp(' ')
option= input('Select a option: ');
switch option
case 1
A=input('New amplitude of the carrier signal= ');
case 2
f=input('New carrier frequency (Hz) = ');
case 3
fs=input('New sampling frequency (Hz)= ');
case 4
SNR_dB=input('New signal to noise ratio (dB)= ');
case 5
m=input('New number of phase states =');
case 6
k=input('New number of segments =');
case 7
deltaf=input('New Modulation Bandwidth =');
case 8
T=input('New Overall Code period =');
case 9
newvar = 0;
end
clc;
end
newvar2 = 1;
while newvar2 == 1;
disp(' ')
disp('WHICH PHASECODE DO YOU WANT TO USE ? ')
disp(' ')
disp('1. T1')
disp('2. T2')
disp('3. T3')
disp('4. T4')
disp(' ')
option2 = input('Select a phasecode ');
switch option2
case 1
% Compute the T1 Polytime Phase (formula from paper)
ttt=1;
for tt = 0:(Ts):(T-Ts)
jj = floor(k*tt/T);
phase(ttt)= mod(((2*pi/m)*floor(((k*tt - jj*T)*(jj*m/T)))), 2*pi);
if ttt==1
phaseunwrapped(ttt)=phase(ttt);
else
if phase(ttt)==phase(ttt-1)
phaseunwrapped(ttt)=phaseunwrapped(ttt-1);
else
phaseunwrapped(ttt)=phaseunwrapped(ttt-1)+2*pi/m;
end
end
ttt= ttt+1;
end
newvar2=0;
case 2
%Compute the T2 Polytime Phase (formula from paper)
ttt=1;
for tt = 0:(Ts):(T-Ts)
jj = floor(k*tt/T);
phase(ttt)= mod(((2*pi/m)*floor((((k*tt - jj*T)*((2*jj-k+1)/T)*(m/2))))), 2*pi);
if ttt==1
phaseunwrapped(ttt)=phase(ttt);
else
if phase(ttt)==phase(ttt-1)
phaseunwrapped(ttt)=phaseunwrapped(ttt-1);
else
phaseunwrapped(ttt)=phaseunwrapped(ttt-1)+2*pi/m;
end
end
ttt= ttt+1;
end
newvar2=0;
case 3
%Compute the T3 Polytime Phase (formula from paper)
ttt=1;
for tt = 0:(Ts):(T-Ts)
phase(ttt)=mod(((2*pi/m)*floor((m*deltaf*tt.^2)/(2*T))),2*pi);
if ttt==1
phaseunwrapped(ttt)=phase(ttt);
else
if phase(ttt)==phase(ttt-1)
phaseunwrapped(ttt)=phaseunwrapped(ttt-1);
else
phaseunwrapped(ttt)=phaseunwrapped(ttt-1)+2*pi/m;
end
end
ttt = ttt+1;
end
newvar2=0;
case 4
%Compute the T4 Polytime Phase (formula from paper)
ttt=1;
for tt = 0:(Ts):(T-Ts)
phase(ttt)=mod(((2*pi/m)*floor((m*deltaf*tt.^2)/(2*T)-(m*f*tt)/2)),2*pi);
if ttt==1
phaseunwrapped(ttt)=phase(ttt);
else
if phase(ttt)==phase(ttt-1)
phaseunwrapped(ttt)=phaseunwrapped(ttt-1);
else
phaseunwrapped(ttt)=phaseunwrapped(ttt-1)+2*pi/m;
end
end
ttt = ttt+1;
end
newvar2=0;
end
clc;
end
Phase=deltaphi*floor(phase/deltaphi);
%--------------------------------------------------------------------------
% This section generates I & Q without T1-T4 phase shift and I & Q with Phase
% shift. The signals are generated five times by the outer loop. The
% variable 'index' is used to generate a time vector for time domain plots.
%--------------------------------------------------------------------------
index=1;
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors
for loop=1:(ttt-1) %Loop to shift phase
I(index)=A*cos(2*pi*f*(loop-1)*Ts+Phase(loop)); %Calculate in phase component of signal with phase shift
IWO(index)=A*cos(2*pi*f*(loop-1)*Ts); % Calculate in phase component of signal without phase shift
Q(index)=A*sin(2*pi*f*(loop-1)*Ts+Phase(loop)); % Calculate quadrature component of signal with phase shift
QWO(index)=A*sin(2*pi*(loop-1)*Ts); %Calculate quadrature component of signal without phase shift
time(index)=(index-1)*Ts; %time vector cumulation
index = index+1;
end
end
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-10,-20]
%for loop makes calculations and plots for each value of SNR for WGN
[a,b]=size(I);
SNR=10^(SNR_dB/10);
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function
noise=wgn(a,b,power);%calculate noise at specified SNR
IN=I+noise; %add noise to I with P4 phase shift
IPWON=I; %I with phase shift without noise
QN=Q+noise; %add noise to Q with P4 phase shift
QPWON=Q; %Q with phase shift without noise
%*******************************************************
%PLOTS
%******************************************************
disp(' ')
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s');
disp(' ')
if (plt == 'Y') | (plt =='y')
disp(' ')
%Plot Power Spectral Density for I without phase shift
figurecount=1; %figurecount is plot index
figure (figurecount); % open new figure for plot
psd(IWO,[],fs); %Power Spectral Density of I without Phase shift
title(['Fig # ' num2str(figurecount) ', PSD of I without Phase Shift or Noise']);
figurecount=figurecount+1; %increment figure count
%time domain plot of in phase signal I without phase shift
figure (figurecount); % open new figure for plot
% plot small portion of time domain signal I so that data will fit meaningfully in figure.
%floor(size(time,2)/scale) selects a small sample of the vectors to plot
plot (time,IWO);
title(['Fig # ' num2str(figurecount) ', Time Domain of I without Phase Shift or Noise']);
xlabel('{\itTime - Seconds} ');
ylabel('Amplitude');
grid on;
figurecount=figurecount+1; %increment figure index
%Power Spectral Density for I with phase shift
figure (figurecount); %open new figure for plot
psd(I,[],fs); %plot power spectral density of I with phase shift
title(['Fig # ' num2str(figurecount) ', PSD of I Phase Shift & no Noise']);
figurecount=figurecount+1; %increment figure index
%time domain plot of in phase signal I with phase shift
figure (figurecount); %open new figure for plot
% plot small portion of time domain signal I so that data will fit meaningfully in figure.
%floor(size(time,2)/scale) selects a small sample of the vectors to plot
plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale)));
title(['Fig # ' num2str(figurecount) ', Time Domain of I with Phase Shift & no Noise']);
xlabel('{\itTime - Seconds} ');
ylabel('Amplitude');
grid on;
figurecount=figurecount+1;%increment figure index
%Plot PSD and Time Domain of I+ TX Phase + WGN and Time Domain of I + TX Phase
figure (figurecount);% open new figure for plot
psd(IN,[],fs);%plot PSD for specified noise SNR
title(['Fig # ' num2str(figurecount) ', PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]);
figurecount=figurecount+1;%increment figure index
%plot time domain signal I with TX phase shift and WGN at specified SNR
figure (figurecount);%open new figure for plot
plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale)));
title(['Fig # ' num2str(figurecount) ', Time Domain of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]);
xlabel('{\itTime - Seconds} ');
ylabel('Amplitude');
grid on;
figurecount=figurecount+1;%increment figure index
figure (figurecount);% open new figure for plot
plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale)));
title(['Fig # ' num2str(figurecount) ', Time Domain of I with Phase Shift witoutout Noise']);
xlabel('{\itTime - Seconds} ');
ylabel ('Amplitude');
grid on;
figurecount=figurecount+1;%increment figure index
% Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from I+jQ.
% To determine phase shift, look at the phase angle of I+jQ at every 7th time interval. Expect to see the P4 phase
% function plot repeated 5 times after unwrapping and detrending the phase angle.
figure(figurecount);%open new figure for plot
plot(phase);
title(['Fig # ' num2str(figurecount) ', Phase Shift (radians)']);
xlabel('i - index for phase change');
ylabel('Phase Shift - Theta');
grid on;
figurecount=figurecount+1;%increment figure index
%Now strip out points from I and Q to reconstruct phase shift.
%I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase calculation,;
%by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5). The vector was repeated five times.
signal=I(1:SAR*k:size(I,2))+j*Q(1:SAR*k:size(I,2));
phase_signal=angle(signal);%determine the angle from the complex signal
% unwrap(I) corrects the radian phase angles in array I by adding multiples of
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -