⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 huffman.c.svn-base

📁 MP3 for ARM codec. [asm+C]
💻 SVN-BASE
📖 第 1 页 / 共 2 页
字号:
						return -1;					while (cachedBits < minBits) {						cache |= (unsigned int)(*buf++) << (24 - cachedBits);						cachedBits += 8;						bitsLeft -= 8;					}					if (bitsLeft < 0) {						cachedBits += bitsLeft;						bitsLeft = 0;						cache &= (signed int)0x80000000 >> (cachedBits - 1);					}					y += (int)(cache >> (32 - linBits));					cachedBits -= linBits;					cache <<= linBits;				}				if (y)	{ApplySign(y, cache); cache <<= 1; cachedBits--;}				/* ran out of bits - should never have consumed padBits */				if (cachedBits < padBits)					return -1;				*xy++ = x;				*xy++ = y;				nVals -= 2;				tCurr = tBase;			}		}		bitsLeft += (cachedBits - padBits);		return (startBits - bitsLeft);	}	/* error in bitstream - trying to access unused Huffman table */	return -1;}/************************************************************************************** * Function:    DecodeHuffmanQuads * * Description: decode 4-way vector Huffman codes in the "count1" region of spectrum * * Inputs:      valid BitStreamInfo struct, pointing to start of quadword codes *              pointer to vwxy buffer to received decoded values *              maximum number of codewords to decode *              index of quadword table (0 = table A, 1 = table B) *              number of bits remaining in bitstream * * Outputs:     quadruples of decoded coefficients in vwxy *              updated BitStreamInfo struct * * Return:      index of the first "zero_part" value (index of the first sample  *                of the quad word after which all samples are 0) *  * Notes:        si_huff.bit tests every vwxy output in both quad tables **************************************************************************************/// no improvement with section=datastatic int DecodeHuffmanQuads(int *vwxy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset){	int i, v, w, x, y;	int len, maxBits, cachedBits, padBits;	unsigned int cache;	unsigned char cw, *tBase;	if (bitsLeft <= 0)		return 0;	tBase = (unsigned char *)quadTable + quadTabOffset[tabIdx];	maxBits = quadTabMaxBits[tabIdx];	/* initially fill cache with any partial byte */	cache = 0;	cachedBits = (8 - bitOffset) & 0x07;	if (cachedBits)		cache = (unsigned int)(*buf++) << (32 - cachedBits);	bitsLeft -= cachedBits;	i = padBits = 0;	while (i < (nVals - 3)) {		/* refill cache - assumes cachedBits <= 16 */		if (bitsLeft >= 16) {			/* load 2 new bytes into left-justified cache */			cache |= (unsigned int)(*buf++) << (24 - cachedBits);			cache |= (unsigned int)(*buf++) << (16 - cachedBits);			cachedBits += 16;			bitsLeft -= 16;		} else {			/* last time through, pad cache with zeros and drain cache */			if (cachedBits + bitsLeft <= 0) return i;			if (bitsLeft > 0)	cache |= (unsigned int)(*buf++) << (24 - cachedBits);			if (bitsLeft > 8)	cache |= (unsigned int)(*buf++) << (16 - cachedBits);			cachedBits += bitsLeft;			bitsLeft = 0;			cache &= (signed int)0x80000000 >> (cachedBits - 1);			padBits = 10;			cachedBits += padBits;	/* okay if this is > 32 (0's automatically shifted in from right) */		}		/* largest maxBits = 6, plus 4 for sign bits, so make sure cache has at least 10 bits */		while (i < (nVals - 3) && cachedBits >= 10 ) {			cw = tBase[cache >> (32 - maxBits)];			len = GetHLenQ(cw);			cachedBits -= len;			cache <<= len;			v = GetCWVQ(cw);	if(v) {ApplySign(v, cache); cache <<= 1; cachedBits--;}			w = GetCWWQ(cw);	if(w) {ApplySign(w, cache); cache <<= 1; cachedBits--;}			x = GetCWXQ(cw);	if(x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}			y = GetCWYQ(cw);	if(y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}			/* ran out of bits - okay (means we're done) */			if (cachedBits < padBits)				return i;			*vwxy++ = v;			*vwxy++ = w;			*vwxy++ = x;			*vwxy++ = y;			i += 4;		}	}	/* decoded max number of quad values */	return i;}/************************************************************************************** * Function:    DecodeHuffman * * Description: decode one granule, one channel worth of Huffman codes * * Inputs:      MP3DecInfo structure filled by UnpackFrameHeader(), UnpackSideInfo(), *                and UnpackScaleFactors() (for this granule) *              buffer pointing to start of Huffman data in MP3 frame *              pointer to bit offset (0-7) indicating starting bit in buf[0] *              number of bits in the Huffman data section of the frame *                (could include padding bits) *              index of current granule and channel * * Outputs:     decoded coefficients in hi->huffDecBuf[ch] (hi pointer in mp3DecInfo) *              updated bitOffset * * Return:      length (in bytes) of Huffman codes *              bitOffset also returned in parameter (0 = MSB, 7 = LSB of  *                byte located at buf + offset) *              -1 if null input pointers, huffBlockBits < 0, or decoder runs  *                out of bits prematurely (invalid bitstream) **************************************************************************************/// .data about 1ms faster per frameint DecodeHuffman(MP3DecInfo *mp3DecInfo, unsigned char *buf, int *bitOffset, int huffBlockBits, int gr, int ch){	int r1Start, r2Start, rEnd[4];	/* region boundaries */	int i, w, bitsUsed, bitsLeft;	unsigned char *startBuf = buf;	FrameHeader *fh;	SideInfo *si;	SideInfoSub *sis;	ScaleFactorInfo *sfi;	HuffmanInfo *hi;	/* validate pointers */	if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || !mp3DecInfo->ScaleFactorInfoPS || !mp3DecInfo->HuffmanInfoPS)		return -1;	fh = ((FrameHeader *)(mp3DecInfo->FrameHeaderPS));	si = ((SideInfo *)(mp3DecInfo->SideInfoPS));	sis = &si->sis[gr][ch];	sfi = ((ScaleFactorInfo *)(mp3DecInfo->ScaleFactorInfoPS));	hi = (HuffmanInfo*)(mp3DecInfo->HuffmanInfoPS);	if (huffBlockBits < 0)		return -1;	/* figure out region boundaries (the first 2*bigVals coefficients divided into 3 regions) */	if (sis->winSwitchFlag && sis->blockType == 2) {		if (sis->mixedBlock == 0) {			r1Start = fh->sfBand->s[(sis->region0Count + 1)/3] * 3;		} else {			if (fh->ver == MPEG1) {				r1Start = fh->sfBand->l[sis->region0Count + 1];			} else {				/* see MPEG2 spec for explanation */				w = fh->sfBand->s[4] - fh->sfBand->s[3];				r1Start = fh->sfBand->l[6] + 2*w;			}		}		r2Start = MAX_NSAMP;	/* short blocks don't have region 2 */	} else {		r1Start = fh->sfBand->l[sis->region0Count + 1];		r2Start = fh->sfBand->l[sis->region0Count + 1 + sis->region1Count + 1];	}	/* offset rEnd index by 1 so first region = rEnd[1] - rEnd[0], etc. */	rEnd[3] = MIN(MAX_NSAMP, 2 * sis->nBigvals);	rEnd[2] = MIN(r2Start, rEnd[3]);	rEnd[1] = MIN(r1Start, rEnd[3]);	rEnd[0] = 0;	/* rounds up to first all-zero pair (we don't check last pair for (x,y) == (non-zero, zero)) */	hi->nonZeroBound[ch] = rEnd[3];	/* decode Huffman pairs (rEnd[i] are always even numbers) */	bitsLeft = huffBlockBits;	for (i = 0; i < 3; i++) {		bitsUsed = DecodeHuffmanPairs(hi->huffDecBuf[ch] + rEnd[i], rEnd[i+1] - rEnd[i], sis->tableSelect[i], bitsLeft, buf, *bitOffset);		if (bitsUsed < 0 || bitsUsed > bitsLeft)	/* error - overran end of bitstream */			return -1;		/* update bitstream position */		buf += (bitsUsed + *bitOffset) >> 3;		*bitOffset = (bitsUsed + *bitOffset) & 0x07;		bitsLeft -= bitsUsed;	}	/* decode Huffman quads (if any) */	hi->nonZeroBound[ch] += DecodeHuffmanQuads(hi->huffDecBuf[ch] + rEnd[3], MAX_NSAMP - rEnd[3], sis->count1TableSelect, bitsLeft, buf, *bitOffset);	ASSERT(hi->nonZeroBound[ch] <= MAX_NSAMP);	for (i = hi->nonZeroBound[ch]; i < MAX_NSAMP; i++)		hi->huffDecBuf[ch][i] = 0;		/* If bits used for 576 samples < huffBlockBits, then the extras are considered	 *  to be stuffing bits (throw away, but need to return correct bitstream position) 	 */	buf += (bitsLeft + *bitOffset) >> 3;	*bitOffset = (bitsLeft + *bitOffset) & 0x07;		return (buf - startBuf);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -