⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mrctj.f90

📁 数值计算和数值分析在Fortran下的特殊函数库,是数值计算的必备
💻 F90
字号:
MODULE rctj_func
 
! From the book "Computation of Special Functions"
!      by Shanjie Zhang and Jianming Jin
!   Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
!   "However, we give permission to the reader who purchases this book
!    to incorporate any of these programs into his or her programs
!    provided that the copyright is acknowledged."
 
IMPLICIT NONE
INTEGER, PARAMETER  :: dp = SELECTED_REAL_KIND(12, 60)
 
CONTAINS


SUBROUTINE rctj(n, x, nm, rj, dj)

!    ========================================================
!    Purpose: Compute Riccati-Bessel functions of the first
!             kind and their derivatives
!    Input:   x --- Argument of Riccati-Bessel function
!             n --- Order of jn(x)  ( n = 0,1,2,... )
!    Output:  RJ(n) --- x鷍n(x)
!             DJ(n) --- [x鷍n(x)]'
!             NM --- Highest order computed
!    Routines called:
!             MSTA1 and MSTA2 for computing the starting
!             point for backward recurrence
!    ========================================================

INTEGER, INTENT(IN)     :: n
REAL (dp), INTENT(IN)   :: x
INTEGER, INTENT(OUT)    :: nm
REAL (dp), INTENT(OUT)  :: rj(0:n)
REAL (dp), INTENT(OUT)  :: dj(0:n)

REAL (dp)  :: cs, f, f0, f1, rj0, rj1
INTEGER    :: k, m

nm = n
IF (ABS(x) < 1.0D-100) THEN
  DO  k = 0, n
    rj(k) = 0.0D0
    dj(k) = 0.0D0
  END DO
  dj(0) = 1.0D0
  RETURN
END IF
rj(0) = SIN(x)
rj(1) = rj(0) / x - COS(x)
rj0 = rj(0)
rj1 = rj(1)
IF (n >= 2) THEN
  m = msta1(x, 200)
  IF (m < n) THEN
    nm = m
  ELSE
    m = msta2(x, n, 15)
  END IF
  f0 = 0.0D0
  f1 = 1.0D-100
  DO  k = m, 0, -1
    f = (2*k+3) * f1 / x - f0
    IF (k <= nm) rj(k) = f
    f0 = f1
    f1 = f
  END DO
  IF (ABS(rj0) > ABS(rj1)) cs = rj0 / f
  IF (ABS(rj0) <= ABS(rj1)) cs = rj1 / f0
  DO  k = 0, nm
    rj(k) = cs * rj(k)
  END DO
END IF
dj(0) = COS(x)
DO  k = 1, nm
  dj(k) = -k * rj(k) / x + rj(k-1)
END DO
RETURN
END SUBROUTINE rctj


FUNCTION msta1(x, mp) RESULT(fn_val)

!    ===================================================
!    Purpose: Determine the starting point for backward
!             recurrence such that the magnitude of
!             Jn(x) at that point is about 10^(-MP)
!    Input :  x     --- Argument of Jn(x)
!             MP    --- Value of magnitude
!    Output:  MSTA1 --- Starting point
!    ===================================================

REAL (dp), INTENT(IN)  :: x
INTEGER, INTENT(IN)    :: mp
INTEGER                :: fn_val

REAL (dp)  :: a0, f, f0, f1
INTEGER    :: it, n0, n1, nn

a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO  it = 1, 20
  nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
  f = envj(nn,a0) - mp
  IF (ABS(nn-n1) < 1) EXIT
  n0 = n1
  f0 = f1
  n1 = nn
  f1 = f
END DO

fn_val = nn
RETURN
END FUNCTION msta1



FUNCTION msta2(x, n, mp) RESULT(fn_val)

!    ===================================================
!    Purpose: Determine the starting point for backward
!             recurrence such that all Jn(x) has MP
!             significant digits
!    Input :  x  --- Argument of Jn(x)
!             n  --- Order of Jn(x)
!             MP --- Significant digit
!    Output:  MSTA2 --- Starting point
!    ===================================================

REAL (dp), INTENT(IN)  :: x
INTEGER, INTENT(IN)    :: n
INTEGER, INTENT(IN)    :: mp
INTEGER                :: fn_val

REAL (dp)  :: a0, ejn, f, f0, f1, hmp, obj
INTEGER    :: it, n0, n1, nn

a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
  obj = mp
  n0 = INT(1.1*a0)
ELSE
  obj = hmp + ejn
  n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO  it = 1, 20
  nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
  f = envj(nn, a0) - obj
  IF (ABS(nn-n1) < 1) EXIT
  n0 = n1
  f0 = f1
  n1 = nn
  f1 = f
END DO

fn_val = nn + 10
RETURN
END FUNCTION msta2



FUNCTION envj(n, x) RESULT(fn_val)

INTEGER, INTENT(IN)    :: n
REAL (dp), INTENT(IN)  :: x
REAL (dp)              :: fn_val

fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj

END MODULE rctj_func
 
 
 
PROGRAM mrctj
USE rctj_func
IMPLICIT NONE

! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25  Time: 11:55:45

!    =======================================================
!    Purpose: This program computes the Riccati-Bessel
!             functions of the first kind, and their
!             derivatives using subroutine RCTJ
!    Input:   x --- Argument of Riccati-Bessel function
!             n --- Order of jn(x)  ( 0 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -