📄 msphi.f90
字号:
MODULE sphi_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE sphi(n, x, nm, si, di)
! ========================================================
! Purpose: Compute modified spherical Bessel functions
! of the first kind, in(x) and in'(x)
! Input : x --- Argument of in(x)
! n --- Order of in(x) ( n = 0,1,2,... )
! Output: SI(n) --- in(x)
! DI(n) --- in'(x)
! NM --- Highest order computed
! Routines called:
! MSTA1 and MSTA2 for computing the starting
! point for backward recurrence
! ========================================================
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(OUT) :: nm
REAL (dp), INTENT(OUT) :: si(0:n)
REAL (dp), INTENT(OUT) :: di(0:n)
REAL (dp) :: cs, f, f0, f1, si0
INTEGER :: k, m
nm = n
IF (ABS(x) < 1.0D-100) THEN
DO k = 0, n
si(k) = 0.0_dp
di(k) = 0.0_dp
END DO
si(0) = 1.0_dp
di(1) = 0.333333333333333_dp
RETURN
END IF
si(0) = SINH(x) / x
si(1) = -(SINH(x)/x - COSH(x)) / x
si0 = si(0)
IF (n >= 2) THEN
m = msta1(x, 200)
IF (m < n) THEN
nm = m
ELSE
m = msta2(x, n, 15)
END IF
f0 = 0.0_dp
f1 = 1.0_dp - 100
DO k = m, 0, -1
f = (2*k+3) * f1 / x + f0
IF (k <= nm) si(k) = f
f0 = f1
f1 = f
END DO
cs = si0 / f
si(0:nm) = cs * si(0:nm)
END IF
di(0) = si(1)
DO k = 1, nm
di(k) = si(k-1) - (k+1)/x * si(k)
END DO
RETURN
END SUBROUTINE sphi
FUNCTION msta1(x, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that the magnitude of
! Jn(x) at that point is about 10^(-MP)
! Input : x --- Argument of Jn(x)
! MP --- Value of magnitude
! Output: MSTA1 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, f, f0, f1
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn,a0) - mp
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn
RETURN
END FUNCTION msta1
FUNCTION msta2(x, n, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that all Jn(x) has MP
! significant digits
! Input : x --- Argument of Jn(x)
! n --- Order of Jn(x)
! MP --- Significant digit
! Output: MSTA2 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, ejn, f, f0, f1, hmp, obj
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
obj = mp
n0 = INT(1.1*a0)
ELSE
obj = hmp + ejn
n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn, a0) - obj
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn + 10
RETURN
END FUNCTION msta2
FUNCTION envj(n, x) RESULT(fn_val)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj
END MODULE sphi_func
PROGRAM msphi
USE sphi_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:47
! ======================================================
! Purpose: This program computes the modified spherical
! Bessel functions of the first kind in(x) and
! in'(x) using subroutine SPHI
! Input : x --- Argument of in(x)
! n --- Order of in(x) ( 0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -