📄 mch12n.f90
字号:
MODULE ch12n_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE ch12n(n, z, nm, chf1, chd1, chf2, chd2)
! ====================================================
! Purpose: Compute Hankel functions of the first and
! second kinds and their derivatives for a
! complex argument
! Input : z --- Complex argument
! n --- Order of Hn(1)(z) and Hn(2)(z)
! Output: CHF1(n) --- Hn(1)(z)
! CHD1(n) --- Hn(1)'(z)
! CHF2(n) --- Hn(2)(z)
! CHD2(n) --- Hn(2)'(z)
! NM --- Highest order computed
! Routines called:
! (1) CJYNB for computing Jn(z) and Yn(z)
! (2) CIKNB for computing In(z) and Kn(z)
! ====================================================
INTEGER, INTENT(IN) :: n
COMPLEX (dp), INTENT(IN) :: z
INTEGER, INTENT(OUT) :: nm
COMPLEX (dp), INTENT(OUT) :: chf1(0:n)
COMPLEX (dp), INTENT(OUT) :: chd1(0:n)
COMPLEX (dp), INTENT(OUT) :: chf2(0:n)
COMPLEX (dp), INTENT(OUT) :: chd2(0:n)
COMPLEX (dp) :: cbj(0:250), cdj(0:250), cby(0:250), cdy(0:250), &
cbi(0:250), cdi(0:250), cbk(0:250), cdk(0:250)
COMPLEX (dp) :: cfac, cf1, ci, zi
INTEGER :: k
REAL (dp), PARAMETER :: pi = 3.141592653589793_dp
ci = (0.0_dp, 1.0_dp)
IF (AIMAG(z) < 0.0_dp) THEN
CALL cjynb(n, z, nm, cbj, cdj, cby, cdy)
DO k = 0, nm
chf1(k) = cbj(k) + ci * cby(k)
chd1(k) = cdj(k) + ci * cdy(k)
END DO
zi = ci * z
CALL ciknb(n, zi, nm, cbi, cdi, cbk, cdk)
cfac = -2.0_dp / (pi*ci)
DO k = 0, nm
chf2(k) = cfac * cbk(k)
chd2(k) = cfac * ci * cdk(k)
cfac = cfac * ci
END DO
ELSE IF (AIMAG(z) > 0.0_dp) THEN
zi = -ci * z
CALL ciknb(n, zi, nm, cbi, cdi, cbk, cdk)
cf1 = -ci
cfac = 2.0_dp / (pi*ci)
DO k = 0, nm
chf1(k) = cfac * cbk(k)
chd1(k) = -cfac * ci * cdk(k)
cfac = cfac * cf1
END DO
CALL cjynb(n, z, nm, cbj, cdj, cby, cdy)
DO k = 0, nm
chf2(k) = cbj(k) - ci * cby(k)
chd2(k) = cdj(k) - ci * cdy(k)
END DO
ELSE
CALL cjynb(n, z, nm, cbj, cdj, cby, cdy)
DO k = 0, nm
chf1(k) = cbj(k) + ci * cby(k)
chd1(k) = cdj(k) + ci * cdy(k)
chf2(k) = cbj(k) - ci * cby(k)
chd2(k) = cdj(k) - ci * cdy(k)
END DO
END IF
RETURN
END SUBROUTINE ch12n
SUBROUTINE cjynb(n, z, nm, cbj, cdj, cby, cdy)
! =======================================================
! Purpose: Compute Bessel functions Jn(z), Yn(z) and
! their derivatives for a complex argument
! Input : z --- Complex argument of Jn(z) and Yn(z)
! n --- Order of Jn(z) and Yn(z)
! Output: CBJ(n) --- Jn(z)
! CDJ(n) --- Jn'(z)
! CBY(n) --- Yn(z)
! CDY(n) --- Yn'(z)
! NM --- Highest order computed
! Routines called:
! MSTA1 and MSTA2 to calculate the starting
! point for backward recurrence
! =======================================================
INTEGER, INTENT(IN) :: n
COMPLEX (dp), INTENT(IN) :: z
INTEGER, INTENT(OUT) :: nm
COMPLEX (dp), INTENT(OUT) :: cbj(0:n)
COMPLEX (dp), INTENT(OUT) :: cdj(0:n)
COMPLEX (dp), INTENT(OUT) :: cby(0:n)
COMPLEX (dp), INTENT(OUT) :: cdy(0:n)
REAL (dp) :: a0, y0
COMPLEX (dp) :: cbj0, cbj1, cbjk, cbs, cby0, cby1, ce, cf, cf1, cf2, &
cp0, cp1, cq0, cq1, cs0, csu, csv, ct1, ct2, cu, cyy
INTEGER :: k, m
REAL (dp), PARAMETER :: el = 0.5772156649015329_dp, pi = 3.141592653589793_dp
REAL (dp), PARAMETER :: a(4) = (/ -.7031250000000000D-01, &
0.1121520996093750_dp, -0.5725014209747314_dp, 0.6074042001273483D+01 /)
REAL (dp), PARAMETER :: b(4) = (/ 0.7324218750000000D-01, &
-0.2271080017089844_dp, 0.1727727502584457D+01, -.2438052969955606D+02 /)
REAL (dp), PARAMETER :: a1(4) = (/ 0.1171875000000000_dp, &
-0.1441955566406250_dp, 0.6765925884246826_dp, -0.6883914268109947D+01 /)
REAL (dp), PARAMETER :: b1(4) = (/ -0.1025390625000000_dp, &
0.2775764465332031_dp, -0.1993531733751297D+01, 0.2724882731126854D+02 /)
REAL (dp), PARAMETER :: r2p = .63661977236758_dp
y0 = ABS(AIMAG(z))
a0 = ABS(z)
nm = n
IF (a0 < 1.0D-100) THEN
DO k = 0, n
cbj(k) = (0.0_dp,0.0_dp)
cdj(k) = (0.0_dp,0.0_dp)
cby(k) = -(1.0D+300,0.0_dp)
cdy(k) = (1.0D+300,0.0_dp)
END DO
cbj(0) = (1.0_dp,0.0_dp)
cdj(1) = (0.5_dp,0.0_dp)
RETURN
END IF
IF (a0 <= 300._dp .OR. n > 80) THEN
IF (n == 0) nm = 1
m = msta1(a0,200)
IF (m < nm) THEN
nm = m
ELSE
m = msta2(a0, nm, 15)
END IF
cbs = (0.0_dp,0.0_dp)
csu = (0.0_dp,0.0_dp)
csv = (0.0_dp,0.0_dp)
cf2 = (0.0_dp,0.0_dp)
cf1 = (1.0D-100,0.0_dp)
DO k = m, 0, -1
cf = 2.0_dp * (k+1.0_dp) / z * cf1 - cf2
IF (k <= nm) cbj(k) = cf
IF (k == 2*INT(k/2) .AND. k /= 0) THEN
IF (y0 <= 1.0_dp) THEN
cbs = cbs + 2.0_dp * cf
ELSE
cbs = cbs + (-1) ** (k/2) * 2.0_dp * cf
END IF
csu = csu + (-1) ** (k/2) * cf / k
ELSE IF (k > 1) THEN
csv = csv + (-1) ** (k/2) * k / (k*k-1.0_dp) * cf
END IF
cf2 = cf1
cf1 = cf
END DO
IF (y0 <= 1.0_dp) THEN
cs0 = cbs + cf
ELSE
cs0 = (cbs+cf) / COS(z)
END IF
DO k = 0, nm
cbj(k) = cbj(k) / cs0
END DO
ce = LOG(z/2.0_dp) + el
cby(0) = r2p * (ce*cbj(0) - 4.0_dp*csu/cs0)
cby(1) = r2p * (-cbj(0)/z + (ce-1.0_dp)*cbj(1) - 4.0_dp*csv/cs0)
ELSE
ct1 = z - 0.25_dp * pi
cp0 = (1.0_dp,0.0_dp)
DO k = 1, 4
cp0 = cp0 + a(k) * z ** (-2*k)
END DO
cq0 = -0.125_dp / z
DO k = 1, 4
cq0 = cq0 + b(k) * z ** (-2*k-1)
END DO
cu = SQRT(r2p/z)
cbj0 = cu * (cp0*COS(ct1) - cq0*SIN(ct1))
cby0 = cu * (cp0*SIN(ct1) + cq0*COS(ct1))
cbj(0) = cbj0
cby(0) = cby0
ct2 = z - 0.75_dp * pi
cp1 = (1.0_dp,0.0_dp)
DO k = 1, 4
cp1 = cp1 + a1(k) * z ** (-2*k)
END DO
cq1 = 0.375_dp / z
DO k = 1, 4
cq1 = cq1 + b1(k) * z ** (-2*k-1)
END DO
cbj1 = cu * (cp1*COS(ct2) - cq1*SIN(ct2))
cby1 = cu * (cp1*SIN(ct2) + cq1*COS(ct2))
cbj(1) = cbj1
cby(1) = cby1
DO k = 2, nm
cbjk = 2.0_dp * (k-1) / z * cbj1 - cbj0
cbj(k) = cbjk
cbj0 = cbj1
cbj1 = cbjk
END DO
END IF
cdj(0) = -cbj(1)
DO k = 1, nm
cdj(k) = cbj(k-1) - k / z * cbj(k)
END DO
IF (ABS(cbj(0)) > 1.0_dp) THEN
cby(1) = (cbj(1)*cby(0) - 2.0_dp/(pi*z)) / cbj(0)
END IF
DO k = 2, nm
IF (ABS(cbj(k-1)) >= ABS(cbj(k-2))) THEN
cyy = (cbj(k)*cby(k-1) - 2.0_dp/(pi*z)) / cbj(k-1)
ELSE
cyy = (cbj(k)*cby(k-2) - 4.0_dp*(k-1.0_dp)/(pi*z*z)) / cbj(k-2)
END IF
cby(k) = cyy
END DO
cdy(0) = -cby(1)
DO k = 1, nm
cdy(k) = cby(k-1) - k / z * cby(k)
END DO
RETURN
END SUBROUTINE cjynb
SUBROUTINE ciknb(n, z, nm, cbi, cdi, cbk, cdk)
! ============================================================
! Purpose: Compute modified Bessel functions In(z) and Kn(z),
! and their derivatives for a complex argument
! Input: z --- Complex argument
! n --- Order of In(z) and Kn(z)
! Output: CBI(n) --- In(z)
! CDI(n) --- In'(z)
! CBK(n) --- Kn(z)
! CDK(n) --- Kn'(z)
! NM --- Highest order computed
! Routones called:
! MSTA1 and MSTA2 to compute the starting point for
! backward recurrence
! ===========================================================
INTEGER, INTENT(IN) :: n
COMPLEX (dp), INTENT(IN) :: z
INTEGER, INTENT(OUT) :: nm
COMPLEX (dp), INTENT(OUT) :: cbi(0:n)
COMPLEX (dp), INTENT(OUT) :: cdi(0:n)
COMPLEX (dp), INTENT(OUT) :: cbk(0:n)
COMPLEX (dp), INTENT(OUT) :: cdk(0:n)
REAL (dp) :: a0, fac, vt
COMPLEX (dp) :: ca0, cbkl, cbs, cf, cf0, cf1, cg, cg0, cg1, ci, &
cr, cs0, csk0, z1
INTEGER :: k, k0, l, m
REAL (dp), PARAMETER :: pi = 3.141592653589793_dp, el = 0.57721566490153_dp
a0 = ABS(z)
nm = n
IF (a0 < 1.0D-100) THEN
DO k = 0, n
cbi(k) = (0.0_dp,0.0_dp)
cbk(k) = (1.0D+300,0.0_dp)
cdi(k) = (0.0_dp,0.0_dp)
cdk(k) = -(1.0D+300,0.0_dp)
END DO
cbi(0) = (1.0_dp,0.0_dp)
cdi(1) = (0.5_dp,0.0_dp)
RETURN
END IF
z1 = z
ci = (0.0_dp,1.0_dp)
IF (REAL(z) < 0.0) z1 = -z
IF (n == 0) nm = 1
m = msta1(a0,200)
IF (m < nm) THEN
nm = m
ELSE
m = msta2(a0, nm, 15)
END IF
cbs = 0.0_dp
csk0 = 0.0_dp
cf0 = 0.0_dp
cf1 = 1.0D-100
DO k = m, 0, -1
cf = 2.0_dp * (k+1.0_dp) * cf1 / z1 + cf0
IF (k <= nm) cbi(k) = cf
IF (k /= 0 .AND. k == 2*INT(k/2)) csk0 = csk0 + 4.0_dp * cf / k
cbs = cbs + 2.0_dp * cf
cf0 = cf1
cf1 = cf
END DO
cs0 = EXP(z1) / (cbs-cf)
DO k = 0, nm
cbi(k) = cs0 * cbi(k)
END DO
IF (a0 <= 9.0) THEN
cbk(0) = -(LOG(0.5_dp*z1) + el) * cbi(0) + cs0 * csk0
cbk(1) = (1.0_dp/z1-cbi(1)*cbk(0)) / cbi(0)
ELSE
ca0 = SQRT(pi/(2.0_dp*z1)) * EXP(-z1)
k0 = 16
IF (a0 >= 25.0) k0 = 10
IF (a0 >= 80.0) k0 = 8
IF (a0 >= 200.0) k0 = 6
DO l = 0, 1
cbkl = 1.0_dp
vt = 4.0_dp * l
cr = (1.0_dp,0.0_dp)
DO k = 1, k0
cr = 0.125_dp * cr * (vt-(2.0*k-1.0)**2) / (k*z1)
cbkl = cbkl + cr
END DO
cbk(l) = ca0 * cbkl
END DO
END IF
cg0 = cbk(0)
cg1 = cbk(1)
DO k = 2, nm
cg = 2.0_dp * (k-1.0_dp) / z1 * cg1 + cg0
cbk(k) = cg
cg0 = cg1
cg1 = cg
END DO
IF (REAL(z) < 0.0) THEN
fac = 1.0_dp
DO k = 0, nm
IF (AIMAG(z) < 0.0) THEN
cbk(k) = fac * cbk(k) + ci * pi * cbi(k)
ELSE
cbk(k) = fac * cbk(k) - ci * pi * cbi(k)
END IF
cbi(k) = fac * cbi(k)
fac = -fac
END DO
END IF
cdi(0) = cbi(1)
cdk(0) = -cbk(1)
DO k = 1, nm
cdi(k) = cbi(k-1) - k / z * cbi(k)
cdk(k) = -cbk(k-1) - k / z * cbk(k)
END DO
RETURN
END SUBROUTINE ciknb
FUNCTION msta1(x, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that the magnitude of
! Jn(x) at that point is about 10^(-MP)
! Input : x --- Argument of Jn(x)
! MP --- Value of magnitude
! Output: MSTA1 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, f, f0, f1
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn,a0) - mp
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn
RETURN
END FUNCTION msta1
FUNCTION msta2(x, n, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that all Jn(x) has MP
! significant digits
! Input : x --- Argument of Jn(x)
! n --- Order of Jn(x)
! MP --- Significant digit
! Output: MSTA2 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, ejn, f, f0, f1, hmp, obj
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n,a0)
IF (ejn <= hmp) THEN
obj = mp
n0 = INT(1.1*a0)
ELSE
obj = hmp + ejn
n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp-f0/f1)
f = envj(nn,a0) - obj
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn + 10
RETURN
END FUNCTION msta2
FUNCTION envj(n,x) RESULT(fn_val)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj
END MODULE ch12n_func
PROGRAM mch12n
USE ch12n_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:34
! =====================================================
! Purpose: This program computes Hankel functions of
! the first and second kinds and their derivatives
! for a complex argument using subroutine CH12N
! Input : z --- Complex argument
! n --- Order of Hn(1)(z) and Hn(2)(z)
! ( n = 0,1,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -