📄 mcikna.f90
字号:
MODULE cikna_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
! Latest revision - 27 December 2001
! Corrections by Alan Miller (amiller @ bigpond.net.au)
! Variable cw was used without a value assigned to it.
! In the driver program, COMMON has been replaced with COMPLEX (dp).
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE cikna(n, z, nm, cbi, cdi, cbk, cdk)
! ========================================================
! Purpose: Compute modified Bessel functions In(z), Kn(x)
! and their derivatives for a complex argument
! Input : z --- Complex argument of In(z) and Kn(z)
! n --- Order of In(z) and Kn(z)
! Output: CBI(n) --- In(z)
! CDI(n) --- In'(z)
! CBK(n) --- Kn(z)
! CDK(n) --- Kn'(z)
! NM --- Highest order computed
! Routines called:
! (1) CIK01 to compute I0(z), I1(z) K0(z) & K1(z)
! (2) MSTA1 and MSTA2 to compute the starting
! point for backward recurrence
! ========================================================
INTEGER, INTENT(IN) :: n
COMPLEX (dp), INTENT(IN) :: z
INTEGER, INTENT(OUT) :: nm
COMPLEX (dp), INTENT(OUT) :: cbi(0:n)
COMPLEX (dp), INTENT(OUT) :: cdi(0:n)
COMPLEX (dp), INTENT(OUT) :: cbk(0:n)
COMPLEX (dp), INTENT(OUT) :: cdk(0:n)
COMPLEX (dp) :: cbi0, cdi0, cbi1, cdi1, cbk0, cdk0, cbk1, cdk1, &
cf, cf1, cf2, ckk, cs
REAL (dp) :: a0
INTEGER :: k, m
a0 = ABS(z)
nm = n
IF (a0 < 1.0D-100) THEN
DO k = 0, n
cbi(k) = (0.0_dp,0.0_dp)
cdi(k) = (0.0_dp,0.0_dp)
cbk(k) = -(1.0D+300,0.0_dp)
cdk(k) = (1.0D+300,0.0_dp)
END DO
cbi(0) = (1.0_dp,0.0_dp)
cdi(1) = (0.5_dp,0.0_dp)
RETURN
END IF
CALL cik01(z, cbi0, cdi0, cbi1, cdi1, cbk0, cdk0, cbk1, cdk1)
cbi(0) = cbi0
cbi(1) = cbi1
cbk(0) = cbk0
cbk(1) = cbk1
cdi(0) = cdi0
cdi(1) = cdi1
cdk(0) = cdk0
cdk(1) = cdk1
IF (n <= 1) RETURN
m = msta1(a0, 200)
IF (m < n) THEN
nm = m
ELSE
m = msta2(a0, n, 15)
END IF
cf2 = (0.0_dp,0.0_dp)
cf1 = (1.0D-100,0.0_dp)
DO k = m, 0, -1
cf = 2.0_dp * (k+1.0_dp) / z * cf1 + cf2
IF (k <= nm) cbi(k) = cf
cf2 = cf1
cf1 = cf
END DO
cs = cbi0 / cf
DO k = 0, nm
cbi(k) = cs * cbi(k)
END DO
DO k = 2, nm
IF (ABS(cbi(k-1)) > ABS(cbi(k-2))) THEN
ckk = (1.0_dp/z - cbi(k)*cbk(k-1)) / cbi(k-1)
ELSE
ckk = (cbi(k)*cbk(k-2) + 2*(k-1)/(z*z)) / cbi(k-2)
END IF
cbk(k) = ckk
END DO
DO k = 2, nm
cdi(k) = cbi(k-1) - k / z * cbi(k)
cdk(k) = -cbk(k-1) - k / z * cbk(k)
END DO
RETURN
END SUBROUTINE cikna
SUBROUTINE cik01(z, cbi0, cdi0, cbi1, cdi1, cbk0, cdk0, cbk1, cdk1)
! ==========================================================
! Purpose: Compute modified complex Bessel functions I0(z),
! I1(z), K0(z), K1(z), and their derivatives
! Input : z --- Complex argument
! Output: CBI0 --- I0(z)
! CDI0 --- I0'(z)
! CBI1 --- I1(z)
! CDI1 --- I1'(z)
! CBK0 --- K0(z)
! CDK0 --- K0'(z)
! CBK1 --- K1(z)
! CDK1 --- K1'(z)
! ==========================================================
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp), INTENT(OUT) :: cbi0
COMPLEX (dp), INTENT(OUT) :: cdi0
COMPLEX (dp), INTENT(OUT) :: cbi1
COMPLEX (dp), INTENT(OUT) :: cdi1
COMPLEX (dp), INTENT(OUT) :: cbk0
COMPLEX (dp), INTENT(OUT) :: cdk0
COMPLEX (dp), INTENT(OUT) :: cbk1
COMPLEX (dp), INTENT(OUT) :: cdk1
COMPLEX (dp) :: ca, cb, ci, cr, cs, ct, cw, z1, z2, zr, zr2
REAL (dp) :: a0, w0
INTEGER :: k, k0
REAL (dp), PARAMETER :: pi = 3.141592653589793_dp
REAL (dp), PARAMETER :: a(12) = (/ 0.125_dp, 7.03125D-2, 7.32421875D-2, &
1.1215209960938D-1, 2.2710800170898D-1, 5.7250142097473D-1, &
1.7277275025845_dp, 6.0740420012735_dp, 2.4380529699556D01, &
1.1001714026925D02, 5.5133589612202D02, 3.0380905109224D03 /)
REAL (dp), PARAMETER :: b(12) = (/ -0.375_dp, -1.171875D-1, -1.025390625D-1, &
-1.4419555664063D-1, -2.7757644653320D-1, -6.7659258842468D-1, &
-1.9935317337513_dp, -6.8839142681099_dp, -2.7248827311269D01, &
-1.2159789187654D02, -6.0384407670507D02, -3.3022722944809D03 /)
REAL (dp), PARAMETER :: a1(10) = (/ 0.125_dp, 0.2109375_dp, 1.0986328125_dp, &
1.1775970458984D01, 2.1461706161499D02, 5.9511522710323D03, &
2.3347645606175D05, 1.2312234987631D07, 8.401390346421D08, &
7.2031420482627D10 /)
ci = (0.0_dp,1.0_dp)
a0 = ABS(z)
z2 = z * z
z1 = z
IF (a0 == 0.0_dp) THEN
cbi0 = (1.0_dp,0.0_dp)
cbi1 = (0.0_dp,0.0_dp)
cdi0 = (0.0_dp,0.0_dp)
cdi1 = (0.5_dp,0.0_dp)
cbk0 = (1.0D+300,0.0_dp)
cbk1 = (1.0D+300,0.0_dp)
cdk0 = -(1.0D+300,0.0_dp)
cdk1 = -(1.0D+300,0.0_dp)
RETURN
END IF
IF (REAL(z) < 0.0) z1 = -z
IF (a0 <= 18.0) THEN
cbi0 = (1.0_dp,0.0_dp)
cr = (1.0_dp,0.0_dp)
DO k = 1, 50
cr = 0.25_dp * cr * z2 / (k*k)
cbi0 = cbi0 + cr
IF (ABS(cr/cbi0) < 1.0D-15) EXIT
END DO
cbi1 = (1.0_dp,0.0_dp)
cr = (1.0_dp,0.0_dp)
DO k = 1, 50
cr = 0.25_dp * cr * z2 / (k*(k+1))
cbi1 = cbi1 + cr
IF (ABS(cr/cbi1) < 1.0D-15) EXIT
END DO
cbi1 = 0.5_dp * z1 * cbi1
ELSE
k0 = 12
IF (a0 >= 35.0) k0 = 9
IF (a0 >= 50.0) k0 = 7
ca = EXP(z1) / SQRT(2.0_dp*pi*z1)
cbi0 = (1.0_dp,0.0_dp)
zr = 1.0_dp / z1
DO k = 1, k0
cbi0 = cbi0 + a(k) * zr ** k
END DO
cbi0 = ca * cbi0
cbi1 = (1.0_dp,0.0_dp)
DO k = 1, k0
cbi1 = cbi1 + b(k) * zr ** k
END DO
cbi1 = ca * cbi1
END IF
IF (a0 <= 9.0) THEN
cs = (0.0_dp,0.0_dp)
cw = cs
ct = -LOG(0.5_dp*z1) - 0.5772156649015329_dp
w0 = 0.0_dp
cr = (1.0_dp,0.0_dp)
DO k = 1, 50
w0 = w0 + 1.0_dp / k
cr = 0.25_dp * cr / (k*k) * z2
cs = cs + cr * (w0+ct)
IF (ABS((cs-cw)/cs) < 1.0D-15) EXIT
cw = cs
END DO
cbk0 = ct + cs
ELSE
cb = 0.5_dp / z1
zr2 = 1.0_dp / z2
cbk0 = (1.0_dp,0.0_dp)
DO k = 1, 10
cbk0 = cbk0 + a1(k) * zr2 ** k
END DO
cbk0 = cb * cbk0 / cbi0
END IF
cbk1 = (1.0_dp/z1 - cbi1*cbk0) / cbi0
IF (REAL(z) < 0.0) THEN
IF (AIMAG(z) < 0.0) cbk0 = cbk0 + ci * pi * cbi0
IF (AIMAG(z) > 0.0) cbk0 = cbk0 - ci * pi * cbi0
IF (AIMAG(z) < 0.0) cbk1 = -cbk1 + ci * pi * cbi1
IF (AIMAG(z) > 0.0) cbk1 = -cbk1 - ci * pi * cbi1
cbi1 = -cbi1
END IF
cdi0 = cbi1
cdi1 = cbi0 - 1.0_dp / z * cbi1
cdk0 = -cbk1
cdk1 = -cbk0 - 1.0_dp / z * cbk1
RETURN
END SUBROUTINE cik01
FUNCTION msta1(x, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that the magnitude of
! Jn(x) at that point is about 10^(-MP)
! Input : x --- Argument of Jn(x)
! MP --- Value of magnitude
! Output: MSTA1 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, f, f0, f1
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn,a0) - mp
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn
RETURN
END FUNCTION msta1
FUNCTION msta2(x, n, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that all Jn(x) has MP
! significant digits
! Input : x --- Argument of Jn(x)
! n --- Order of Jn(x)
! MP --- Significant digit
! Output: MSTA2 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, ejn, f, f0, f1, hmp, obj
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
obj = mp
n0 = INT(1.1*a0)
ELSE
obj = hmp + ejn
n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn, a0) - obj
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn + 10
RETURN
END FUNCTION msta2
FUNCTION envj(n, x) RESULT(fn_val)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj
END MODULE cikna_func
PROGRAM mcikna
USE cikna_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:35
! =============================================================
! Purpose: This program computes the modified Bessel functions
! In(z) and Kn(z), and their derivatives for a
! complex argument using subroutine CIKNA
! Input : z --- Complex argument of In(z) and Kn(z)
! n --- Order of In(z) and Kn(z)
! ( n = 0,1,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -