⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcjynb.f90

📁 数值计算和数值分析在Fortran下的特殊函数库,是数值计算的必备
💻 F90
字号:
MODULE cjynb_func
 
! From the book "Computation of Special Functions"
!      by Shanjie Zhang and Jianming Jin
!   Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
!   "However, we give permission to the reader who purchases this book
!    to incorporate any of these programs into his or her programs
!    provided that the copyright is acknowledged."
 
IMPLICIT NONE
INTEGER, PARAMETER  :: dp = SELECTED_REAL_KIND(12, 60)
 
CONTAINS


SUBROUTINE cjynb(n, z, nm, cbj, cdj, cby, cdy)

!       =======================================================
!       Purpose: Compute Bessel functions Jn(z), Yn(z) and
!                their derivatives for a complex argument
!       Input :  z --- Complex argument of Jn(z) and Yn(z)
!                n --- Order of Jn(z) and Yn(z)
!       Output:  CBJ(n) --- Jn(z)
!                CDJ(n) --- Jn'(z)
!                CBY(n) --- Yn(z)
!                CDY(n) --- Yn'(z)
!                NM --- Highest order computed
!       Routines called:
!                MSTA1 and MSTA2 to calculate the starting
!                point for backward recurrence
!       =======================================================

INTEGER, INTENT(IN)        :: n
COMPLEX (dp), INTENT(IN)   :: z
INTEGER, INTENT(OUT)       :: nm
COMPLEX (dp), INTENT(OUT)  :: cbj(0:n)
COMPLEX (dp), INTENT(OUT)  :: cdj(0:n)
COMPLEX (dp), INTENT(OUT)  :: cby(0:n)
COMPLEX (dp), INTENT(OUT)  :: cdy(0:n)

REAL (dp), PARAMETER  :: a(4) = (/ -.7031250000000000D-01, .1121520996093750_dp,  &
      -0.5725014209747314_dp, .6074042001273483D+01 /)
REAL (dp), PARAMETER  :: b(4) = (/ .7324218750000000D-01, -.2271080017089844_dp,  &
      .1727727502584457D+01, -.2438052969955606D+02 /)
REAL (dp), PARAMETER  :: a1(4) = (/ .1171875000000000_dp, -.1441955566406250_dp,  &
      .6765925884246826_dp, -.6883914268109947D+01 /)
REAL (dp), PARAMETER  :: b1(4) = (/ -.1025390625000000_dp, .2775764465332031_dp,  &
      -0.1993531733751297D+01, .2724882731126854D+02 /)

REAL (dp), PARAMETER  :: el = 0.5772156649015329D0, pi = 3.141592653589793D0, &
                         r2p = .63661977236758D0
COMPLEX (dp)  :: cbj0, cbj1, cbjk, cbs, cby0, cby1, ce, cf, cf1, cf2,  &
                 cp0, cp1, cq0, cq1, cs0, csu, csv, ct1, ct2, cu, cyy
REAL (dp)     :: a0, y0
INTEGER       :: k, m

y0 = ABS(AIMAG(z))
a0 = ABS(z)
nm = n
IF (a0 < 1.0D-100) THEN
  DO  k = 0, n
    cbj(k) = (0.0D0,0.0D0)
    cdj(k) = (0.0D0,0.0D0)
    cby(k) = -(1.0D+300,0.0D0)
    cdy(k) = (1.0D+300,0.0D0)
  END DO
  cbj(0) = (1.0D0,0.0D0)
  cdj(1) = (0.5D0,0.0D0)
  RETURN
END IF
IF (a0 <= 300.d0 .OR. n > INT(0.25*a0)) THEN
  IF (n == 0) nm = 1
  m = msta1(a0, 200)
  IF (m < nm) THEN
    nm = m
  ELSE
    m = msta2(a0, nm, 15)
  END IF
  cbs = (0.0D0,0.0D0)
  csu = (0.0D0,0.0D0)
  csv = (0.0D0,0.0D0)
  cf2 = (0.0D0,0.0D0)
  cf1 = (1.0D-100,0.0D0)
  DO  k = m, 0, -1
    cf = 2.0D0 * (k+1.0D0) / z * cf1 - cf2
    IF (k <= nm) cbj(k) = cf
    IF (k == 2*INT(k/2) .AND. k /= 0) THEN
      IF (y0 <= 1.0D0) THEN
        cbs = cbs + 2.0D0 * cf
      ELSE
        cbs = cbs + (-1) ** (k/2) * 2.0D0 * cf
      END IF
      csu = csu + (-1) ** (k/2) * cf / k
    ELSE IF (k > 1) THEN
      csv = csv + (-1) ** (k/2) * k / (k*k-1.0D0) * cf
    END IF
    cf2 = cf1
    cf1 = cf
  END DO
  IF (y0 <= 1.0D0) THEN
    cs0 = cbs + cf
  ELSE
    cs0 = (cbs+cf) / COS(z)
  END IF
  DO  k = 0, nm
    cbj(k) = cbj(k) / cs0
  END DO
  ce = LOG(z/2.0D0) + el
  cby(0) = r2p * (ce*cbj(0) - 4.0D0*csu/cs0)
  cby(1) = r2p * (-cbj(0)/z + (ce-1.0D0)*cbj(1) - 4.0D0*csv/cs0)
ELSE
  ct1 = z - 0.25D0 * pi
  cp0 = (1.0D0,0.0D0)
  DO  k = 1, 4
    cp0 = cp0 + a(k) * z ** (-2*k)
  END DO
  cq0 = -0.125D0 / z
  DO  k = 1, 4
    cq0 = cq0 + b(k) * z ** (-2*k-1)
  END DO
  cu = SQRT(r2p/z)
  cbj0 = cu * (cp0*COS(ct1) - cq0*SIN(ct1))
  cby0 = cu * (cp0*SIN(ct1) + cq0*COS(ct1))
  cbj(0) = cbj0
  cby(0) = cby0
  ct2 = z - 0.75D0 * pi
  cp1 = (1.0D0,0.0D0)
  DO  k = 1, 4
    cp1 = cp1 + a1(k) * z ** (-2*k)
  END DO
  cq1 = 0.375D0 / z
  DO  k = 1, 4
    cq1 = cq1 + b1(k) * z ** (-2*k-1)
  END DO
  cbj1 = cu * (cp1*COS(ct2) - cq1*SIN(ct2))
  cby1 = cu * (cp1*SIN(ct2) + cq1*COS(ct2))
  cbj(1) = cbj1
  cby(1) = cby1
  DO  k = 2, nm
    cbjk = 2.0D0 * (k-1.0D0) / z * cbj1 - cbj0
    cbj(k) = cbjk
    cbj0 = cbj1
    cbj1 = cbjk
  END DO
END IF
cdj(0) = -cbj(1)
DO  k = 1, nm
  cdj(k) = cbj(k-1) - k / z * cbj(k)
END DO
IF (ABS(cbj(0)) > 1.0D0) THEN
  cby(1) = (cbj(1)*cby(0)-2.0D0/(pi*z)) / cbj(0)
END IF
DO  k = 2, nm
  IF (ABS(cbj(k-1)) >= ABS(cbj(k-2))) THEN
    cyy = (cbj(k)*cby(k-1)-2.0D0/(pi*z)) / cbj(k-1)
  ELSE
    cyy = (cbj(k)*cby(k-2)-4.0D0*(k-1.0D0)/(pi*z*z)) / cbj(k-2)
  END IF
  cby(k) = cyy
END DO
cdy(0) = -cby(1)
DO  k = 1, nm
  cdy(k) = cby(k-1) - k / z * cby(k)
END DO
RETURN
END SUBROUTINE cjynb



FUNCTION msta1(x, mp) RESULT(fn_val)

!       ===================================================
!       Purpose: Determine the starting point for backward
!                recurrence such that the magnitude of
!                Jn(x) at that point is about 10^(-MP)
!       Input :  x     --- Argument of Jn(x)
!                MP    --- Value of magnitude
!       Output:  MSTA1 --- Starting point
!       ===================================================

REAL (dp), INTENT(IN)      :: x
INTEGER, INTENT(IN)        :: mp
INTEGER                    :: fn_val

REAL (dp)  :: a0, f, f0, f1
INTEGER    :: it, n0, n1, nn

a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO  it = 1, 20
  nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
  f = envj(nn,a0) - mp
  IF (ABS(nn-n1) < 1) EXIT
  n0 = n1
  f0 = f1
  n1 = nn
  f1 = f
END DO

fn_val = nn
RETURN
END FUNCTION msta1



FUNCTION msta2(x, n, mp) RESULT(fn_val)

!       ===================================================
!       Purpose: Determine the starting point for backward
!                recurrence such that all Jn(x) has MP
!                significant digits
!       Input :  x  --- Argument of Jn(x)
!                n  --- Order of Jn(x)
!                MP --- Significant digit
!       Output:  MSTA2 --- Starting point
!       ===================================================

REAL (dp), INTENT(IN)      :: x
INTEGER, INTENT(IN)        :: n
INTEGER, INTENT(IN)        :: mp
INTEGER                    :: fn_val

REAL (dp)  :: a0, ejn, f, f0, f1, hmp, obj
INTEGER    :: it, n0, n1, nn

a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
  obj = mp
  n0 = INT(1.1*a0)
ELSE
  obj = hmp + ejn
  n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO  it = 1, 20
  nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
  f = envj(nn, a0) - obj
  IF (ABS(nn-n1) < 1) EXIT
  n0 = n1
  f0 = f1
  n1 = nn
  f1 = f
END DO

fn_val = nn + 10
RETURN
END FUNCTION msta2



FUNCTION envj(n, x) RESULT(fn_val)

INTEGER, INTENT(IN)        :: n
REAL (dp), INTENT(IN)      :: x
REAL (dp)                  :: fn_val

fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj

END MODULE cjynb_func
 
 
 
PROGRAM mcjynb
USE cjynb_func
IMPLICIT NONE

! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25  Time: 11:55:36

!       ================================================================
!       Purpose: This program computes Bessel functions Jn(z), Yn(z)
!                and their derivatives for a complex argument using
!                subroutine CJYNB
!       Input :  z --- Complex argument of Jn(z) and Yn(z)
!                n --- Order of Jn(z) and Yn(z)
!                      ( n = 0,1,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -