📄 mcjylv.f90
字号:
MODULE cjylv_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE cjylv(v, z, cbjv, cdjv, cbyv, cdyv)
! ===================================================
! Purpose: Compute Bessel functions Jv(z) and Yv(z)
! and their derivatives with a complex
! argument and a large order
! Input: v --- Order of Jv(z) and Yv(z)
! z --- Complex argument
! Output: CBJV --- Jv(z)
! CDJV --- Jv'(z)
! CBYV --- Yv(z)
! CDYV --- Yv'(z)
! Routine called:
! CJK to compute the expansion coefficients
! ===================================================
REAL (dp), INTENT(IN) :: v
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp), INTENT(OUT) :: cbjv
COMPLEX (dp), INTENT(OUT) :: cdjv
COMPLEX (dp), INTENT(OUT) :: cbyv
COMPLEX (dp), INTENT(OUT) :: cdyv
COMPLEX (dp) :: ceta, cf(12), cfj, cfy, csj, csy, ct, ct2, cws
REAL (dp) :: a(91), pi, v0, vr
INTEGER :: i, k, km, l, l0, lf
km = 12
CALL cjk(km, a)
pi = 3.141592653589793_dp
DO l = 1, 0, -1
v0 = v - l
cws = SQRT(1.0_dp - (z/v0)*(z/v0))
ceta = cws + LOG(z/v0/(1.0_dp+cws))
ct = 1.0_dp / cws
ct2 = ct * ct
DO k = 1, km
l0 = k * (k+1) / 2 + 1
lf = l0 + k
cf(k) = a(lf)
DO i = lf - 1, l0, -1
cf(k) = cf(k) * ct2 + a(i)
END DO
cf(k) = cf(k) * ct ** k
END DO
vr = 1.0_dp / v0
csj = (1.0_dp,0.0_dp)
DO k = 1, km
csj = csj + cf(k) * vr ** k
END DO
cbjv = SQRT(ct/(2.0_dp*pi*v0)) * EXP(v0*ceta) * csj
IF (l == 1) cfj = cbjv
csy = (1.0_dp,0.0_dp)
DO k = 1, km
csy = csy + (-1) ** k * cf(k) * vr ** k
END DO
cbyv = -SQRT(2.0_dp*ct/(pi*v0)) * EXP(-v0*ceta) * csy
IF (l == 1) cfy = cbyv
END DO
cdjv = -v / z * cbjv + cfj
cdyv = -v / z * cbyv + cfy
RETURN
END SUBROUTINE cjylv
SUBROUTINE cjk(km, a)
! ========================================================
! Purpose: Compute the expansion coefficients for the
! asymptotic expansion of Bessel functions
! with large orders
! Input : Km --- Maximum k
! Output: A(L) --- Cj(k) where j and k are related to L
! by L=j+1+[k*(k+1)]/2; j,k=0,1,...,Km
! ========================================================
INTEGER, INTENT(IN) :: km
REAL (dp), INTENT(OUT) :: a(:)
REAL (dp) :: f, f0, g, g0
INTEGER :: j, k, l1, l2, l3, l4
a(1) = 1.0_dp
f0 = 1.0_dp
g0 = 1.0_dp
DO k = 0, km - 1
l1 = (k+1) * (k+2) / 2 + 1
l2 = (k+1) * (k+2) / 2 + k + 2
f = (0.5_dp*k + 0.125_dp/(k+1)) * f0
g = -(1.5_dp*k + 0.625_dp/(3*(k+1))) * g0
a(l1) = f
a(l2) = g
f0 = f
g0 = g
END DO
DO k = 1, km - 1
DO j = 1, k
l3 = k * (k+1) / 2 + j + 1
l4 = (k+1) * (k+2) / 2 + j + 1
a(l4) = (j + 0.5_dp*k + 0.125_dp/(2*j+k+1)) * a(l3) - (j+0.5_dp*k &
-1.0 + 0.625_dp/(2*j+k+1)) * a(l3-1)
END DO
END DO
RETURN
END SUBROUTINE cjk
END MODULE cjylv_func
PROGRAM mcjylv
USE cjylv_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:36
! ========================================================
! Purpose: This program computes Bessel functions Jv(z)
! and Yv(z) and their derivatives with a large
! order and complex argument using subroutine
! CJYLV
! Input: v --- Order of Jv(z) and Yv(z)
! z --- Complex argument
! Output: CBJV --- Jv(z)
! CDJV --- Jv'(z)
! CBYV --- Yv(z)
! CDYV --- Yv'(z)
! Examples:
! v = 100.00, z = 4.00 + 2.00 i
! Jv(z) = -.6444792518-123 + .6619157435-123 i
! Jv'(z)= -.6251103777-122 + .1967638668-121 i
! Yv(z) = .2403065353+121 + .2472039414+121 i
! Yv'(z)= -.7275814786+122 - .2533588851+122 i
! v =100.5, z = 4.00 + 2.00 i
! Jv(z) = -.1161315754-123 + .7390127781-124 i
! Jv'(z)= -.1588519437-122 + .2652227059-122 i
! Yv(z) = .1941381412+122 + .1237578195+122 i
! Yv'(z)= -.5143285247+123 - .5320026773+122 i
! ========================================================
COMPLEX (dp) :: z, cbjv, cdjv, cbyv, cdyv
REAL (dp) :: v, x, y
WRITE (*,*) 'Please enter v,x and y ( z = x+iy )'
READ (*,*) v, x, y
WRITE (*,5000) v, x, y
z = CMPLX(x, y, KIND=dp)
CALL cjylv(v, z, cbjv, cdjv, cbyv, cdyv)
WRITE (*,*)
WRITE (*,5100) cbjv
WRITE (*,5200) cdjv
WRITE (*,*)
WRITE (*,5300) cbyv
WRITE (*,5400) cdyv
STOP
5000 FORMAT (t9, 'v = ', f6.2, ', z =', f7.2, ' + i ', f7.2)
5100 FORMAT (t9, 'Jv(z) =', g17.10, ' + i', g17.10)
5200 FORMAT (t9, 'Jv''(Z)=', g17.10, ' + I', g17.10)
5300 FORMAT (t9, 'Yv(z) =', g17.10, ' + i', g17.10)
5400 FORMAT (t9, 'Yv''(Z)=', g17.10, ' + I', g17.10)
END PROGRAM mcjylv
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -