📄 mcsphjy.f90
字号:
MODULE csphjy_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE csphjy(n, z, nm, csj, cdj, csy, cdy)
! ==========================================================
! Purpose: Compute spherical Bessel functions jn(z) & yn(z)
! and their derivatives for a complex argument
! Input : z --- Complex argument
! n --- Order of jn(z) & yn(z) ( n = 0,1,2,... )
! Output: CSJ(n) --- jn(z)
! CDJ(n) --- jn'(z)
! CSY(n) --- yn(z)
! CDY(n) --- yn'(z)
! NM --- Highest order computed
! Routines called:
! MSTA1 and MSTA2 for computing the starting
! point for backward recurrence
! ==========================================================
INTEGER, INTENT(IN) :: n
COMPLEX (dp), INTENT(IN) :: z
INTEGER, INTENT(OUT) :: nm
COMPLEX (dp), INTENT(OUT) :: csj(0:n)
COMPLEX (dp), INTENT(OUT) :: cdj(0:n)
COMPLEX (dp), INTENT(OUT) :: csy(0:n)
COMPLEX (dp), INTENT(OUT) :: cdy(0:n)
REAL (dp) :: a0
COMPLEX (dp) :: cf, cf0, cf1, cs, csa, csb
INTEGER :: k, m
a0 = ABS(z)
nm = n
IF (a0 < 1.0D-60) THEN
DO k = 0, n
csj(k) = 0.0_dp
cdj(k) = 0.0_dp
csy(k) = -1.0D+300
cdy(k) = 1.0D+300
END DO
csj(0) = (1.0_dp,0.0_dp)
cdj(1) = (.333333333333333_dp,0.0_dp)
RETURN
END IF
csj(0) = SIN(z) / z
csj(1) = (csj(0) - COS(z)) / z
IF (n >= 2) THEN
csa = csj(0)
csb = csj(1)
m = msta1(a0, 200)
IF (m < n) THEN
nm = m
ELSE
m = msta2(a0, n, 15)
END IF
cf0 = 0.0_dp
cf1 = 1.0_dp - 100
DO k = m, 0, -1
cf = (2*k+3) * cf1 / z - cf0
IF (k <= nm) csj(k) = cf
cf0 = cf1
cf1 = cf
END DO
IF (ABS(csa) > ABS(csb)) cs = csa / cf
IF (ABS(csa) <= ABS(csb)) cs = csb / cf0
DO k = 0, nm
csj(k) = cs * csj(k)
END DO
END IF
cdj(0) = (COS(z) - SIN(z)/z) / z
DO k = 1, nm
cdj(k) = csj(k-1) - (k+1) * csj(k) / z
END DO
csy(0) = -COS(z) / z
csy(1) = (csy(0) - SIN(z)) / z
cdy(0) = (SIN(z) + COS(z)/z) / z
cdy(1) = (2.0_dp*cdy(0) - COS(z)) / z
DO k = 2, nm
IF (ABS(csj(k-1)) > ABS(csj(k-2))) THEN
csy(k) = (csj(k)*csy(k-1) - 1.0_dp/(z*z)) / csj(k-1)
ELSE
csy(k) = (csj(k)*csy(k-2) - (2*k-1)/z**3) / csj(k-2)
END IF
END DO
DO k = 2, nm
cdy(k) = csy(k-1) - (k+1) * csy(k) / z
END DO
RETURN
END SUBROUTINE csphjy
FUNCTION msta1(x, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that the magnitude of
! Jn(x) at that point is about 10^(-MP)
! Input : x --- Argument of Jn(x)
! MP --- Value of magnitude
! Output: MSTA1 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, f, f0, f1
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn,a0) - mp
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn
RETURN
END FUNCTION msta1
FUNCTION msta2(x, n, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that all Jn(x) has MP
! significant digits
! Input : x --- Argument of Jn(x)
! n --- Order of Jn(x)
! MP --- Significant digit
! Output: MSTA2 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, ejn, f, f0, f1, hmp, obj
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
obj = mp
n0 = INT(1.1*a0)
ELSE
obj = hmp + ejn
n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn, a0) - obj
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn + 10
RETURN
END FUNCTION msta2
FUNCTION envj(n, x) RESULT(fn_val)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj
END MODULE csphjy_func
PROGRAM mcsphjy
USE csphjy_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:37
! ================================================================
! Purpose: This program computes the spherical Bessel functions
! jn(z), yn(z), and their derivatives for a complex
! argument using subroutine CSPHJY
! Input : z --- Complex argument
! n --- Order of jn(z) & yn(z) ( 0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -