📄 mlamn.f90
字号:
MODULE lamn_func
! From the book "Computation of Special Functions"
! by Shanjie Zhang and Jianming Jin
! Copyright 1996 by John Wiley & Sons, Inc.
! The authors state:
! "However, we give permission to the reader who purchases this book
! to incorporate any of these programs into his or her programs
! provided that the copyright is acknowledged."
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
SUBROUTINE lamn(n, x, nm, bl, dl)
! =========================================================
! Purpose: Compute lambda functions and their derivatives
! Input: x --- Argument of lambda function
! n --- Order of lambda function
! Output: BL(n) --- Lambda function of order n
! DL(n) --- Derivative of lambda function
! NM --- Highest order computed
! Routines called:
! MSTA1 and MSTA2 for computing the start
! point for backward recurrence
! =========================================================
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(OUT) :: nm
REAL (dp), INTENT(OUT) :: bl(0:n)
REAL (dp), INTENT(OUT) :: dl(0:n)
REAL (dp) :: bg, bk, bs, f, f0, f1, r, r0, uk, x2
INTEGER :: i, k, m
nm = n
IF (ABS(x) < 1.0D-100) THEN
DO k = 0, n
bl(k) = 0.0D0
dl(k) = 0.0D0
END DO
bl(0) = 1.0D0
dl(1) = 0.5D0
RETURN
END IF
IF (x <= 12.0D0) THEN
x2 = x * x
DO k = 0, n
bk = 1.0D0
r = 1.0D0
DO i = 1, 50
r = -0.25D0 * r * x2 / (i*(i+k))
bk = bk + r
IF (ABS(r) < ABS(bk)*1.0D-15) EXIT
END DO
bl(k) = bk
IF (k >= 1) dl(k-1) = -0.5D0 * x / k * bk
END DO
uk = 1.0D0
r = 1.0D0
DO i = 1, 50
r = -0.25D0 * r * x2 / (i*(i+n+1.0D0))
uk = uk + r
IF (ABS(r) < ABS(uk)*1.0D-15) EXIT
END DO
dl(n) = -0.5D0 * x / (n+1.0D0) * uk
RETURN
END IF
IF (n == 0) nm = 1
m = msta1(x, 200)
IF (m < nm) THEN
nm = m
ELSE
m = msta2(x, nm, 15)
END IF
bs = 0.0D0
f0 = 0.0D0
f1 = 1.0D-100
DO k = m, 0, -1
f = 2.0D0 * (k+1.0D0) * f1 / x - f0
IF (k <= nm) bl(k) = f
IF (k == 2*INT(k/2)) bs = bs + 2.0D0 * f
f0 = f1
f1 = f
END DO
bg = bs - f
DO k = 0, nm
bl(k) = bl(k) / bg
END DO
r0 = 1.0D0
DO k = 1, nm
r0 = 2.0D0 * r0 * k / x
bl(k) = r0 * bl(k)
END DO
dl(0) = -0.5D0 * x * bl(1)
DO k = 1, nm
dl(k) = 2.0D0 * k / x * (bl(k-1)-bl(k))
END DO
RETURN
END SUBROUTINE lamn
FUNCTION msta1(x, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that the magnitude of
! Jn(x) at that point is about 10^(-MP)
! Input : x --- Argument of Jn(x)
! MP --- Value of magnitude
! Output: MSTA1 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, f, f0, f1
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
n0 = INT(1.1*a0) + 1
f0 = envj(n0,a0) - mp
n1 = n0 + 5
f1 = envj(n1,a0) - mp
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn,a0) - mp
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn
RETURN
END FUNCTION msta1
FUNCTION msta2(x, n, mp) RESULT(fn_val)
! ===================================================
! Purpose: Determine the starting point for backward
! recurrence such that all Jn(x) has MP
! significant digits
! Input : x --- Argument of Jn(x)
! n --- Order of Jn(x)
! MP --- Significant digit
! Output: MSTA2 --- Starting point
! ===================================================
REAL (dp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: mp
INTEGER :: fn_val
REAL (dp) :: a0, ejn, f, f0, f1, hmp, obj
INTEGER :: it, n0, n1, nn
a0 = ABS(x)
hmp = 0.5_dp * mp
ejn = envj(n, a0)
IF (ejn <= hmp) THEN
obj = mp
n0 = INT(1.1*a0)
ELSE
obj = hmp + ejn
n0 = n
END IF
f0 = envj(n0,a0) - obj
n1 = n0 + 5
f1 = envj(n1,a0) - obj
DO it = 1, 20
nn = n1 - (n1-n0) / (1.0_dp - f0/f1)
f = envj(nn, a0) - obj
IF (ABS(nn-n1) < 1) EXIT
n0 = n1
f0 = f1
n1 = nn
f1 = f
END DO
fn_val = nn + 10
RETURN
END FUNCTION msta2
FUNCTION envj(n, x) RESULT(fn_val)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
fn_val = 0.5_dp * LOG10(6.28_dp*n) - n * LOG10(1.36_dp*x/n)
RETURN
END FUNCTION envj
END MODULE lamn_func
PROGRAM mlamn
USE lamn_func
IMPLICIT NONE
! Code converted using TO_F90 by Alan Miller
! Date: 2001-12-25 Time: 11:55:43
! ====================================================
! Purpose: This program computes the lambda functions
! and their derivatives using subroutine LAMN
! Input: x --- Argument of lambda function
! n --- Order of lambda function
! ( n = 0,1,..., n
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -