⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 denali_ecc.c

📁 uboot详细解读可用启动引导LINUX2.6内核
💻 C
字号:
/* * (C) Copyright 2007 * Developed for DENX Software Engineering GmbH. * * Author: Pavel Kolesnikov <concord@emcraft.com> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA *//* define DEBUG for debugging output (obviously ;-)) */#if 0#define DEBUG#endif#include <common.h>#include <watchdog.h>#if defined(CONFIG_440EPX) || defined(CONFIG_440GRX)#include <post.h>#if CONFIG_POST & CFG_POST_ECC/* * MEMORY ECC test * * This test performs the checks ECC facility of memory. */#include <asm/processor.h>#include <asm/mmu.h>#include <asm/io.h>#include <ppc440.h>DECLARE_GLOBAL_DATA_PTR;const static uint8_t syndrome_codes[] = {	0xF4, 0XF1, 0XEC, 0XEA, 0XE9, 0XE6, 0XE5, 0XE3,	0XDC, 0XDA, 0XD9, 0XD6, 0XD5, 0XD3, 0XCE, 0XCB,	0xB5, 0XB0, 0XAD, 0XAB, 0XA8, 0XA7, 0XA4, 0XA2,	0X9D, 0X9B, 0X98, 0X97, 0X94, 0X92, 0X8F, 0X8A,	0x75, 0x70, 0X6D, 0X6B, 0X68, 0X67, 0X64, 0X62,	0X5E, 0X5B, 0X58, 0X57, 0X54, 0X52, 0X4F, 0X4A,	0x34, 0x31, 0X2C, 0X2A, 0X29, 0X26, 0X25, 0X23,	0X1C, 0X1A, 0X19, 0X16, 0X15, 0X13, 0X0E, 0X0B,	0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};#define ECC_START_ADDR		0x10#define ECC_STOP_ADDR		0x2000#define ECC_PATTERN		0x01010101#define ECC_PATTERN_CORR	0x11010101#define ECC_PATTERN_UNCORR	0x61010101inline static void disable_ecc(void){	uint32_t value;	sync(); /* Wait for any pending memory accesses to complete. */	mfsdram(DDR0_22, value);	mtsdram(DDR0_22, (value & ~DDR0_22_CTRL_RAW_MASK)		| DDR0_22_CTRL_RAW_ECC_DISABLE);}inline static void clear_and_enable_ecc(void){	uint32_t value;	sync(); /* Wait for any pending memory accesses to complete. */	mfsdram(DDR0_00, value);	mtsdram(DDR0_00, value | DDR0_00_INT_ACK_ALL);	mfsdram(DDR0_22, value);	mtsdram(DDR0_22, (value & ~DDR0_22_CTRL_RAW_MASK)		| DDR0_22_CTRL_RAW_ECC_ENABLE);}static uint32_t get_ecc_status(void){	uint32_t int_status;#if defined(DEBUG)	uint8_t syndrome;	uint32_t hdata, ldata, haddr, laddr;	uint32_t value;#endif	mfsdram(DDR0_00, int_status);	int_status &= DDR0_00_INT_STATUS_MASK;#if defined(DEBUG)	if (int_status & (DDR0_00_INT_STATUS_BIT0 | DDR0_00_INT_STATUS_BIT1)) {		mfsdram(DDR0_32, laddr);		mfsdram(DDR0_33, haddr);		haddr &= 0x00000001;		if (int_status & DDR0_00_INT_STATUS_BIT1)			debug("Multiple accesses");		else			debug("A single access");		debug(" outside the defined physical memory space detected\n"		      "        addr = 0x%01x%08x\n", haddr, laddr);	}	if (int_status & (DDR0_00_INT_STATUS_BIT2 | DDR0_00_INT_STATUS_BIT3)) {		unsigned int bit;		mfsdram(DDR0_23, value);		syndrome = (value >> 16) & 0xff;		for (bit = 0; bit < sizeof(syndrome_codes); bit++)			if (syndrome_codes[bit] == syndrome)				break;		mfsdram(DDR0_38, laddr);		mfsdram(DDR0_39, haddr);		haddr &= 0x00000001;		mfsdram(DDR0_40, ldata);		mfsdram(DDR0_41, hdata);		if (int_status & DDR0_00_INT_STATUS_BIT3)			debug("Multiple correctable ECC events");		else			debug("Single correctable ECC event");		debug(" detected\n        0x%01x%08x - 0x%08x%08x, bit - %d\n",		      haddr, laddr, hdata, ldata, bit);	}	if (int_status & (DDR0_00_INT_STATUS_BIT4 | DDR0_00_INT_STATUS_BIT5)) {		mfsdram(DDR0_23, value);		syndrome = (value >> 8) & 0xff;		mfsdram(DDR0_34, laddr);		mfsdram(DDR0_35, haddr);		haddr &= 0x00000001;		mfsdram(DDR0_36, ldata);		mfsdram(DDR0_37, hdata);		if (int_status & DDR0_00_INT_STATUS_BIT5)			debug("Multiple uncorrectable ECC events");		else			debug("Single uncorrectable ECC event");		debug(" detected\n        0x%01x%08x - 0x%08x%08x, "		      "syndrome - 0x%02x\n",		      haddr, laddr, hdata, ldata, syndrome);	}	if (int_status & DDR0_00_INT_STATUS_BIT6)		debug("DRAM initialization complete\n");#endif /* defined(DEBUG) */	return int_status;}static int test_ecc(uint32_t ecc_addr){	uint32_t value;	volatile uint32_t *const ecc_mem = (volatile uint32_t *)ecc_addr;	int ret = 0;	WATCHDOG_RESET();	debug("Entering test_ecc(0x%08x)\n", ecc_addr);	/* Set up correct ECC in memory */	disable_ecc();	clear_and_enable_ecc();	out_be32(ecc_mem, ECC_PATTERN);	out_be32(ecc_mem + 1, ECC_PATTERN);	/* Verify no ECC error reading back */	value = in_be32(ecc_mem);	disable_ecc();	if (ECC_PATTERN != value) {		debug("Data read error (no-error case): "		      "expected 0x%08x, read 0x%08x\n", ECC_PATTERN, value);		ret = 1;	}	value = get_ecc_status();	if (0x00000000 != value) {		/* Expected no ECC status reported */		debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",		      0x00000000, value);		ret = 1;	}	/* Test for correctable error by creating a one-bit error */	out_be32(ecc_mem, ECC_PATTERN_CORR);	clear_and_enable_ecc();	value = in_be32(ecc_mem);	disable_ecc();	/* Test that the corrected data was read */	if (ECC_PATTERN != value) {		debug("Data read error (correctable-error case): "		      "expected 0x%08x, read 0x%08x\n", ECC_PATTERN, value);		ret = 1;	}	value = get_ecc_status();	if ((DDR0_00_INT_STATUS_BIT2 | DDR0_00_INT_STATUS_BIT7) != value) {		/* Expected a single correctable error reported */		debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",		      DDR0_00_INT_STATUS_BIT2, value);		ret = 1;	}	/* Test for uncorrectable error by creating a two-bit error */	out_be32(ecc_mem, ECC_PATTERN_UNCORR);	clear_and_enable_ecc();	value = in_be32(ecc_mem);	disable_ecc();	/* Test that the corrected data was read */	if (ECC_PATTERN_UNCORR != value) {		debug("Data read error (uncorrectable-error case): "		      "expected 0x%08x, read 0x%08x\n", ECC_PATTERN_UNCORR,		      value);		ret = 1;	}	value = get_ecc_status();	if ((DDR0_00_INT_STATUS_BIT4 | DDR0_00_INT_STATUS_BIT7) != value) {		/* Expected a single uncorrectable error reported */		debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",		      DDR0_00_INT_STATUS_BIT4, value);		ret = 1;	}	/* Remove error from SDRAM and enable ECC. */	out_be32(ecc_mem, ECC_PATTERN);	clear_and_enable_ecc();	return ret;}int ecc_post_test(int flags){	int ret = 0;	uint32_t value;	uint32_t iaddr;	mfsdram(DDR0_22, value);	if (0x3 != DDR0_22_CTRL_RAW_DECODE(value)) {		debug("SDRAM ECC not enabled, skipping ECC POST.\n");		return 0;	}	/* Mask all interrupts. */	mfsdram(DDR0_01, value);	mtsdram(DDR0_01, (value & ~DDR0_01_INT_MASK_MASK)		| DDR0_01_INT_MASK_ALL_OFF);	for (iaddr = ECC_START_ADDR; iaddr <= ECC_STOP_ADDR; iaddr += iaddr) {		ret = test_ecc(iaddr);		if (ret)			break;	}	/*	 * Clear possible errors resulting from ECC testing.  (If not done, we	 * we could get an interrupt later on when exceptions are enabled.)	 */	set_mcsr(get_mcsr());	debug("ecc_post_test() returning %d\n", ret);	return ret;}#endif /* CONFIG_POST & CFG_POST_ECC */#endif /* defined(CONFIG_440EPX) || defined(CONFIG_440GRX) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -