⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sh_eth.c

📁 uboot详细解读可用启动引导LINUX2.6内核
💻 C
字号:
/* * sh_eth.c - Driver for Renesas SH7763's ethernet controler. * * Copyright (C) 2008 Renesas Solutions Corp. * Copyright (c) 2008 Nobuhiro Iwamatsu * Copyright (c) 2007 Carlos Munoz <carlos@kenati.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <common.h>#include <malloc.h>#include <net.h>#include <asm/errno.h>#include <asm/io.h>#include "sh_eth.h"#ifndef CONFIG_SH_ETHER_USE_PORT# error "Please define CONFIG_SH_ETHER_USE_PORT"#endif#ifndef CONFIG_SH_ETHER_PHY_ADDR# error "Please define CONFIG_SH_ETHER_PHY_ADDR"#endifextern int eth_init(bd_t *bd);extern void eth_halt(void);extern int eth_rx(void);extern int eth_send(volatile void *packet, int length);static struct dev_info_s *dev;/* * Bits are written to the PHY serially using the * PIR register, just like a bit banger. */static void sh_eth_mii_write_phy_bits(int port, u32 val, int len){	int i;	u32 pir;	/* Bit positions is 1 less than the number of bits */	for (i = len - 1; i >= 0; i--) {		/* Write direction, bit to write, clock is low */		pir = 2 | ((val & 1 << i) ? 1 << 2 : 0);		outl(pir, PIR(port));		udelay(1);		/* Write direction, bit to write, clock is high */		pir = 3 | ((val & 1 << i) ? 1 << 2 : 0);		outl(pir, PIR(port));		udelay(1);		/* Write direction, bit to write, clock is low */		pir = 2 | ((val & 1 << i) ? 1 << 2 : 0);		outl(pir, PIR(port));		udelay(1);	}}static void sh_eth_mii_bus_release(int port){	/* Read direction, clock is low */	outl(0, PIR(port));	udelay(1);	/* Read direction, clock is high */	outl(1, PIR(port));	udelay(1);	/* Read direction, clock is low */	outl(0, PIR(port));	udelay(1);}static void sh_eth_mii_ind_bus_release(int port){	/* Read direction, clock is low */	outl(0, PIR(port));	udelay(1);}static int sh_eth_mii_read_phy_bits(int port, u32 * val, int len){	int i;	u32 pir;	*val = 0;	for (i = len - 1; i >= 0; i--) {		/* Read direction, clock is high */		outl(1, PIR(port));		udelay(1);		/* Read bit */		pir = inl(PIR(port));		*val |= (pir & 8) ? 1 << i : 0;		/* Read direction, clock is low */		outl(0, PIR(port));		udelay(1);	}	return 0;}#define PHY_INIT	0xFFFFFFFF#define PHY_READ	0x02#define PHY_WRITE	0x01/* * To read a phy register, mii managements frames are sent to the phy. * The frames look like this: * pre (32 bits):	0xffff ffff * st (2 bits):		01 * op (2bits):		10: read 01: write * phyad (5 bits):	xxxxx * regad (5 bits):	xxxxx * ta (Bus release): * data (16 bits):	read data */static u32 sh_eth_mii_read_phy_reg(int port, u8 phy_addr, int reg){	u32 val;	/* Sent mii management frame */	/* pre */	sh_eth_mii_write_phy_bits(port, PHY_INIT, 32);	/* st (start of frame) */	sh_eth_mii_write_phy_bits(port, 0x1, 2);	/* op (code) */	sh_eth_mii_write_phy_bits(port, PHY_READ, 2);	/* phy address */	sh_eth_mii_write_phy_bits(port, phy_addr, 5);	/* Register to read */	sh_eth_mii_write_phy_bits(port, reg, 5);	/* Bus release */	sh_eth_mii_bus_release(port);	/* Read register */	sh_eth_mii_read_phy_bits(port, &val, 16);	return val;}/* * To write a phy register, mii managements frames are sent to the phy. * The frames look like this: * pre (32 bits):	0xffff ffff * st (2 bits):		01 * op (2bits):		10: read 01: write * phyad (5 bits):	xxxxx * regad (5 bits):	xxxxx * ta (2 bits):		10 * data (16 bits):	write data * idle (Independent bus release) */static void sh_eth_mii_write_phy_reg(int port, u8 phy_addr, int reg, u16 val){	/* Sent mii management frame */	/* pre */	sh_eth_mii_write_phy_bits(port, PHY_INIT, 32);	/* st (start of frame) */	sh_eth_mii_write_phy_bits(port, 0x1, 2);	/* op (code) */	sh_eth_mii_write_phy_bits(port, PHY_WRITE, 2);	/* phy address */	sh_eth_mii_write_phy_bits(port, phy_addr, 5);	/* Register to read */	sh_eth_mii_write_phy_bits(port, reg, 5);	/* ta */	sh_eth_mii_write_phy_bits(port, PHY_READ, 2);	/* Write register data */	sh_eth_mii_write_phy_bits(port, val, 16);	/* Independent bus release */	sh_eth_mii_ind_bus_release(port);}void eth_halt(void){}int eth_send(volatile void *packet, int len){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	int timeout;	int rc = 0;	if (!packet || len > 0xffff) {		printf("eth_send: Invalid argument\n");		return -EINVAL;	}	/* packet must be a 4 byte boundary */	if ((int)packet & (4 - 1)) {		printf("eth_send: packet not 4 byte alligned\n");		return -EFAULT;	}	/* Update tx descriptor */	port_info->tx_desc_cur->td2 = ADDR_TO_PHY(packet);	port_info->tx_desc_cur->td1 = len << 16;	/* Must preserve the end of descriptor list indication */	if (port_info->tx_desc_cur->td0 & TD_TDLE)		port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP | TD_TDLE;	else		port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP;	/* Restart the transmitter if disabled */	if (!(inl(EDTRR(port)) & EDTRR_TRNS))		outl(EDTRR_TRNS, EDTRR(port));	/* Wait until packet is transmitted */	timeout = 1000;	while (port_info->tx_desc_cur->td0 & TD_TACT && timeout--)		udelay(100);	if (timeout < 0) {		printf("eth_send: transmit timeout\n");		rc = -1;		goto err;	}err:	port_info->tx_desc_cur++;	if (port_info->tx_desc_cur >= port_info->tx_desc_base + NUM_TX_DESC)		port_info->tx_desc_cur = port_info->tx_desc_base;	return rc;}int eth_rx(void){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	int len = 0;	volatile u8 *packet;	/* Check if the rx descriptor is ready */	if (!(port_info->rx_desc_cur->rd0 & RD_RACT)) {		/* Check for errors */		if (!(port_info->rx_desc_cur->rd0 & RD_RFE)) {			len = port_info->rx_desc_cur->rd1 & 0xffff;			packet = (volatile u8 *)			    ADDR_TO_P2(port_info->rx_desc_cur->rd2);			NetReceive(packet, len);		}		/* Make current descriptor available again */		if (port_info->rx_desc_cur->rd0 & RD_RDLE)			port_info->rx_desc_cur->rd0 = RD_RACT | RD_RDLE;		else			port_info->rx_desc_cur->rd0 = RD_RACT;		/* Point to the next descriptor */		port_info->rx_desc_cur++;		if (port_info->rx_desc_cur >=		    port_info->rx_desc_base + NUM_RX_DESC)			port_info->rx_desc_cur = port_info->rx_desc_base;	}	/* Restart the receiver if disabled */	if (!(inl(EDRRR(port)) & EDRRR_R))		outl(EDRRR_R, EDRRR(port));	return len;}#define EDMR_INIT_CNT 1000static int sh_eth_reset(struct dev_info_s *dev){	int port = dev->port;	int i;	/* Start e-dmac transmitter and receiver */	outl(EDSR_ENALL, EDSR(port));	/* Perform a software reset and wait for it to complete */	outl(EDMR_SRST, EDMR(port));	for (i = 0; i < EDMR_INIT_CNT; i++) {		if (!(inl(EDMR(port)) & EDMR_SRST))			break;		udelay(1000);	}	if (i == EDMR_INIT_CNT) {		printf("Error: Software reset timeout\n");		return -1;	}	return 0;}static int sh_eth_tx_desc_init(struct dev_info_s *dev){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	u32 tmp_addr;	struct tx_desc_s *cur_tx_desc;	int i;	/* Allocate tx descriptors. They must be TX_DESC_SIZE bytes	   aligned */	if (!(port_info->tx_desc_malloc = malloc(NUM_TX_DESC *						 sizeof(struct tx_desc_s) +						 TX_DESC_SIZE - 1))) {		printf("Error: malloc failed\n");		return -ENOMEM;	}	tmp_addr = (u32) (((int)port_info->tx_desc_malloc + TX_DESC_SIZE - 1) &			  ~(TX_DESC_SIZE - 1));	/* Make sure we use a P2 address (non-cacheable) */	port_info->tx_desc_base = (struct tx_desc_s *)ADDR_TO_P2(tmp_addr);	port_info->tx_desc_cur = port_info->tx_desc_base;	/* Initialize all descriptors */	for (cur_tx_desc = port_info->tx_desc_base, i = 0; i < NUM_TX_DESC;	     cur_tx_desc++, i++) {		cur_tx_desc->td0 = 0x00;		cur_tx_desc->td1 = 0x00;		cur_tx_desc->td2 = 0x00;	}	/* Mark the end of the descriptors */	cur_tx_desc--;	cur_tx_desc->td0 |= TD_TDLE;	/* Point the controller to the tx descriptor list. Must use physical	   addresses */	outl(ADDR_TO_PHY(port_info->tx_desc_base), TDLAR(port));	outl(ADDR_TO_PHY(port_info->tx_desc_base), TDFAR(port));	outl(ADDR_TO_PHY(cur_tx_desc), TDFXR(port));	outl(0x01, TDFFR(port));/* Last discriptor bit */	return 0;}static int sh_eth_rx_desc_init(struct dev_info_s *dev){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	u32 tmp_addr;	struct rx_desc_s *cur_rx_desc;	u8 *rx_buf;	int i;	/* Allocate rx descriptors. They must be RX_DESC_SIZE bytes	   aligned */	if (!(port_info->rx_desc_malloc = malloc(NUM_RX_DESC *						 sizeof(struct rx_desc_s) +						 RX_DESC_SIZE - 1))) {		printf("Error: malloc failed\n");		return -ENOMEM;	}	tmp_addr = (u32) (((int)port_info->rx_desc_malloc + RX_DESC_SIZE - 1) &			  ~(RX_DESC_SIZE - 1));	/* Make sure we use a P2 address (non-cacheable) */	port_info->rx_desc_base = (struct rx_desc_s *)ADDR_TO_P2(tmp_addr);	port_info->rx_desc_cur = port_info->rx_desc_base;	/* Allocate rx data buffers. They must be 32 bytes aligned  and in	   P2 area */	if (!(port_info->rx_buf_malloc = malloc(NUM_RX_DESC * MAX_BUF_SIZE +						31))) {		printf("Error: malloc failed\n");		free(port_info->rx_desc_malloc);		port_info->rx_desc_malloc = NULL;		return -ENOMEM;	}	tmp_addr = (u32)(((int)port_info->rx_buf_malloc + (32 - 1)) &			  ~(32 - 1));	port_info->rx_buf_base = (u8 *)ADDR_TO_P2(tmp_addr);	/* Initialize all descriptors */	for (cur_rx_desc = port_info->rx_desc_base,	     rx_buf = port_info->rx_buf_base, i = 0;	     i < NUM_RX_DESC; cur_rx_desc++, rx_buf += MAX_BUF_SIZE, i++) {		cur_rx_desc->rd0 = RD_RACT;		cur_rx_desc->rd1 = MAX_BUF_SIZE << 16;		cur_rx_desc->rd2 = (u32) ADDR_TO_PHY(rx_buf);	}	/* Mark the end of the descriptors */	cur_rx_desc--;	cur_rx_desc->rd0 |= RD_RDLE;	/* Point the controller to the rx descriptor list */	outl(ADDR_TO_PHY(port_info->rx_desc_base), RDLAR(port));	outl(ADDR_TO_PHY(port_info->rx_desc_base), RDFAR(port));	outl(ADDR_TO_PHY(cur_rx_desc), RDFXR(port));	outl(RDFFR_RDLF, RDFFR(port));	return 0;}static void sh_eth_desc_free(struct dev_info_s *dev){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	if (port_info->tx_desc_malloc) {		free(port_info->tx_desc_malloc);		port_info->tx_desc_malloc = NULL;	}	if (port_info->rx_desc_malloc) {		free(port_info->rx_desc_malloc);		port_info->rx_desc_malloc = NULL;	}	if (port_info->rx_buf_malloc) {		free(port_info->rx_buf_malloc);		port_info->rx_buf_malloc = NULL;	}}static int sh_eth_desc_init(struct dev_info_s *dev){	int rc;	if ((rc = sh_eth_tx_desc_init(dev)) || (rc = sh_eth_rx_desc_init(dev))) {		sh_eth_desc_free(dev);		return rc;	}	return 0;}static int sh_eth_phy_config(struct dev_info_s *dev){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	int timeout;	u32 val;	/* Reset phy */	sh_eth_mii_write_phy_reg(port, port_info->phy_addr, PHY_CTRL, PHY_C_RESET);	timeout = 10;	while (timeout--) {		val = sh_eth_mii_read_phy_reg(port, port_info->phy_addr, PHY_CTRL);		if (!(val & PHY_C_RESET))			break;		udelay(50000);	}	if (timeout < 0) {		printf("%s phy reset timeout\n", __func__);		return -1;	}	/* Advertise 100/10 baseT full/half duplex */	sh_eth_mii_write_phy_reg(port, port_info->phy_addr, PHY_ANA,		(PHY_A_FDX|PHY_A_HDX|PHY_A_10FDX|PHY_A_10HDX|PHY_A_EXT));	/* Autonegotiation, normal operation, full duplex, enable tx */	sh_eth_mii_write_phy_reg(port, port_info->phy_addr, PHY_CTRL,		(PHY_C_ANEGEN|PHY_C_RANEG));	/* Wait for autonegotiation to complete */	timeout = 100;	while (timeout--) {		val = sh_eth_mii_read_phy_reg(port, port_info->phy_addr, 1);		if (val & PHY_S_ANEGC)			break;		udelay(50000);	}	if (timeout < 0) {		printf("sh_eth_phy_config() phy auto-negotiation failed\n");		return -1;	}	return 0;}static int sh_eth_config(struct dev_info_s *dev, bd_t * bd){	int port = dev->port;	struct port_info_s *port_info = &dev->port_info[port];	u32 val;	u32 phy_status;	int rc;	/* Configure e-dmac registers */	outl((inl(EDMR(port)) & ~EMDR_DESC_R) | EDMR_EL, EDMR(port));	outl(0, EESIPR(port));	outl(0, TRSCER(port));	outl(0, TFTR(port));	outl((FIFO_SIZE_T | FIFO_SIZE_R), FDR(port));	outl(RMCR_RST, RMCR(port));	outl(0, RPADIR(port));	outl((FIFO_F_D_RFF | FIFO_F_D_RFD), FCFTR(port));	/* Configure e-mac registers */	outl(0, ECSIPR(port));	/* Set Mac address */	val = bd->bi_enetaddr[0] << 24 | bd->bi_enetaddr[1] << 16 |	    bd->bi_enetaddr[2] << 8 | bd->bi_enetaddr[3];	outl(val, MAHR(port));	val = bd->bi_enetaddr[4] << 8 | bd->bi_enetaddr[5];	outl(val, MALR(port));	outl(RFLR_RFL_MIN, RFLR(port));	outl(0, PIPR(port));	outl(APR_AP, APR(port));	outl(MPR_MP, MPR(port));	outl(TPAUSER_TPAUSE, TPAUSER(port));	/* Configure phy */	if ((rc = sh_eth_phy_config(dev)))		return rc;	/* Read phy status to finish configuring the e-mac */	phy_status = sh_eth_mii_read_phy_reg(dev->port,					     dev->port_info[dev->port].phy_addr,					     1);	/* Set the transfer speed */	if (phy_status & (PHY_S_100X_F|PHY_S_100X_H)) {		printf("100Base/");		outl(GECMR_100B, GECMR(port));	} else {		printf("10Base/");		outl(GECMR_10B, GECMR(port));	}	/* Check if full duplex mode is supported by the phy */	if (phy_status & (PHY_S_100X_F|PHY_S_10T_F)) {		printf("Full\n");		outl((ECMR_CHG_DM|ECMR_RE|ECMR_TE|ECMR_DM), ECMR(port));	} else {		printf("Half\n");		outl((ECMR_CHG_DM|ECMR_RE|ECMR_TE),  ECMR(port));	}	return 0;}static int sh_eth_start(struct dev_info_s *dev){	/*	 * Enable the e-dmac receiver only. The transmitter will be enabled when	 * we have something to transmit	 */	outl(EDRRR_R, EDRRR(dev->port));	return 0;}static int sh_eth_get_mac(bd_t *bd){	char *s, *e;	int i;	s = getenv("ethaddr");	if (s != NULL) {		for (i = 0; i < 6; ++i) {			bd->bi_enetaddr[i] = s ? simple_strtoul(s, &e, 16) : 0;			if (s)				s = (*e) ? e + 1 : e;		}	} else {		puts("Please set MAC address\n");	}	return 0;}int eth_init(bd_t *bd){	int rc;	/* Allocate main device information structure */	if (!(dev = malloc(sizeof(*dev)))) {		printf("eth_init: malloc failed\n");		return -ENOMEM;	}	memset(dev, 0, sizeof(*dev));	dev->port = CONFIG_SH_ETHER_USE_PORT;	dev->port_info[dev->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR;	sh_eth_get_mac(bd);	if ((rc = sh_eth_reset(dev)) || (rc = sh_eth_desc_init(dev)))		goto err;	if ((rc = sh_eth_config(dev, bd)) || (rc = sh_eth_start(dev)))		goto err_desc;	return 0;err_desc:	sh_eth_desc_free(dev);err:	free(dev);	printf("eth_init: Failed\n");	return rc;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -