⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 data1.asv

📁 高速公路路面质量改进方案 采用matlab编程 达到了稳定点
💻 ASV
字号:
function data1
Y=data;

P=[4.2	4	12.48	68.3	1.41	2.451	2.552	85.9	97.8
4.1	4	12.08	67	1.36	2.445	2.549	85.3	97.5
4.1	4	12.42	67.55	4.2	2.45	2.553	84	97.6
4	5.1	13.03	60.66	0	2.425	2.556	0	0
8.6	5.45	21.84	75.03	0	2.358	2.494	0	0
4.5	4.23	13.05	67.61	1.18	2.421	2.535	0	0
5	4.27	14.68	70.89	1.5	2.53	2.646	0	0
4.1	4.15	12.47	66.72	1.51	2.449	2.555	83.9	97.7
4.2	4	12.12	67	1.42	2.447	2.55	86.4	97.9
4.5	4.42	13.71	67.82	0	2.422	2.534	0	0
4.1	4.1	12.31	66.7	1.4	2.441	2.546	86	97.2
4.1	4	14.18	71.79	1.17	2.494	2.596	86	97.9
4.1	4	12.24	66.5	1.54	2.465	2.57	85.2	97.1
4.5	4	13.08	69.43	1.23	2.447	2.549	84.8	97.5
5	4.35	14.29	69.76	1.34	2.44	2.551	0	0
4.1	4.1	12.24	66.4	1.54	2.454	2.558	85.2	97.4
4.4	4.1	13.1	68.7	1.42	2.437	2.538	85.5	97.6
5	5.04	14.52	69	1.4	2.393	2.52	0	0
4.1	4	12.31	67.51	1.42	2.482	2.588	86	97.6
4.5	4.1	13.4	69.41	1.21	2.464	2.564	84.6	97.4
4.1	4	12.34	67.59	1.45	2.455	2.558	86.4	97.7
4.5	4	13.1	69.47	1.15	2.442	2.543	85.4	97.4
4.8	4.4	13.67	0	0	2.413	2.524	0	0
4.1	4	12.18	67.17	1.41	2.475	2.578	84.3	97.1
4.4	4.2	13.28	68.53	1.32	2.456	2.559	85.4	97.5
4.5	4.35	13.48	67.74	0	0	2.528	0	0
4.1	3.9	12.77	69.46	1.44	2.539	2.648	86	97.7
4.3	4.1	13.27	69.09	1.45	2.534	2.643	85.4	97.1
4.9	4.05	14.07	71.22	1.5	2.489	2.594	0	0
4	4	12.51	68.03	1.35	2.55	2.656	84.7	97.5
4	4	12.51	68.03	1.32	2.554	2.655	85	97.7
4.4	4.1	12.4	67.01	1.51	2.436	2.541	84	97.2
4.6	4.2	13.07	68.24	1.22	2.436	2.541	83.5	97.1
5	4.58	15	69.5	1.49	2.417	2.533	0	0
4.1	3.8	12.77	69.46	1.44	2.547	2.65	86	97.7
4.6	3.9	13.63	71.4	1.06	2.468	2.569	83.6	97.6
4.9	4.1	15.08	72.82	1.14	2.462	2.564	85.4	97.4
4.7	4.1	13.19	69.06	1.45	2.422	2.525	84.8	97.8
5.2	4.1	14.68	71.99	1.5	2.482	2.588	84.6	97
4.7	4.21	14.03	69.97	0	2.409	2.515	0	0
5.7	4.3	16.5	73.8	0	2.55	2.665	0	0
4.5	4.2	13.19	68.46	1.25	2.415	2.513	83.1	97.3
4.5	4.1	13.21	68.73	1.23	2.499	2.604	85.2	97.2
4.9	4.27	14.51	70.54	1.4	2.464	2.574	0	0
4.6	4	13.31	69.96	1.23	2.428	2.531	85.4	97.7
4.2	4	12.5	68	0	2.434	2.536	0	0
4.1	3.8	12.14	68.35	1.23	2.453	2.55	0	0
4.5	4.1	13.45	69.44	1.27	2.427	2.531	84.4	97
4.5	4	13.11	69.19	1.32	2.431	2.534	85.7	97.3
4.5	4.1	13.03	68.54	1.33	2.426	2.533	85	97.4
4.6	4.2	13.9	69.8	0	2.415	2.52	0	0
4.6	4.1	13.17	68.78	1.28	2.435	2.539	85.1	97.2
4.5	4.8	14.01	65.92	0	2.41	2.531	0	0
6.1	4.1	16.6	75.6	0	2.483	2.59	0	0
4.1	3.7	11.8	68.8	0	2.438	2.531	0	0
4.1	3.9	12.1	67.1	0	2.436	2.534	0	0
4.5	4.43	13.63	67.5	0	2.42	2.532	0	0
4	3.9	12.11	67.79	1.3	2.507	2.61	85.2	97.3
4.4	4.1	13.13	68.78	1.27	2.477	2.583	85.6	97.5
4.5	4.1	13.04	68.8	1.11	2.426	2.53	84.9	97.7
4	4.12	12.2	66.2	0	2.441	2.546	0	0
4.4	4.05	13.36	69.7	0	2.418	2.52	0	0
4.6	3.9	13.34	70.76	1.24	2.423	2.523	86.2	97.6
4.6	4	13.59	71.3	1.23	2.433	2.535	85.7	97.5
5.2	4	14.76	72.64	1.53	2.472	2.576	85.9	98
4.4	4.1	13.47	69.57	1.28	2.466	2.57	85.7	97.5
4	4.5	12.54	71.29	1.4	2.489	2.581	85.5	98.3
4.2	4	12.28	67.36	0	2.492	2.596	0	0
4	4.3	12.6	65.8	0	2.442	2.552	0	0
6.1	4.13	16.7	75.2	0	2.481	2.586	0	0
4.5	3.9	12.8	69.6	0	2.42	2.518	0	0
4.5	4.1	13.2	69.2	0	2.414	2.516	0	0
4.5	4	12.8	69.1	0	2.42	2.52	0	0
4.3	4.1	12.71	67.75	0.89	2.408	2.51	86.7	97.2
4.2	4	12.25	67.36	1.56	2.41	2.511	85.2	97.8
4.4	4.1	12.58	67.4	1.58	2.438	2.543	85.2	97.6
4.4	3.9	12.93	69.52	1.37	2.442	2.545	86.1	97.3
4.8	4.2	14.03	72.77	1.29	2.521	2.63	86.1	97.1
4.5	4.12	13.2	68.8	1.36	2.403	2.506	85.1	97.3
4.7	4.29	13.87	69.1	0	2.408	2.516	0	0
6.1	3.9	16.5	76.7	0	2.49	2.59	0	0
6.1	4.05	16.58	75.6	0	2.486	2.591	0	0
6.1	4	16.6	75.9	0	2.486	2.59	0	0
4.8	4	13.7	70.8	1.28	2.422	2.524	85.3	97.7
4.5	4.1	13.1	68.71	1.27	2.429	2.533	84.4	97.5
4.5	4	13.04	69.3	1.27	2.43	2.532	84.6	97.1
3.7	5.13	13.04	60.8	0	2.443	2.575	0	0
6	4.1	16.7	75.4	0	2.54	2.649	0	0
6	4.07	16.6	75.4	0	2.496	2.602	0	0
5.1	3.9	14.27	72.67	1.07	2.372	2.474	85.4	97.6
5	4.1	14.61	71.66	1.29	2.385	2.496	85	97.2
4.5	4.2	13.3	68.17	1.32	2.416	2.523	0	0
4.6	4.3	14	69.3	0	2.408	2.517	0	0
4.6	4.1	13.47	69.84	1.14	2.431	2.535	86.1	96.9
4.6	4.3	13.47	68.19	0	2.412	2.52	0	0
4.5	4	13.21	69.73	1.31	2.432	2.533	85.3	97.4
8.6	5.43	22.6	75.99	0	2.441	2.581	0	0
5	4.17	14.4	71	1.491	2.436	2.542	0	0
4.5	4.58	13.45	65.9	1.08	2.419	2.535	0	0
4.5	4.33	12.7	65.88	1.44	2.385	2.493	0	0
6.1	4.36	17.07	74.46	0	2.527	2.635	0	0
5.2	4.15	14.1	70.57	1.28	2.402	2.504	85.2	97.1
6.1	4.06	16.97	76.1	0	2.485	2.59	0	0
6	4.05	16.93	76.1	0	2.532	2.639	0	0
4.3	4.2	13.43	68.73	1.32	2.563	2.671	86.2	97
6.2	4.1	16.5	75	0	2.473	2.58	0	0
6.1	4	17	76.4	0	2.538	2.644	0	0
6.1	3.9	16.64	76.49	0	2.481	2.582	0	0
6.1	4.1	16.8	75.8	0	2.52	2.627	0	0
3.9	3.9	12.07	67.28	1.44	2.461	2.561	85.7	97.8
4.6	4.45	13.55	67.2	0	2.386	2.497	0	0
6.1	4.08	16.84	75.74	0	2.513	2.62	0	0
6.2	4.1	16.6	75.3	0	2.488	2.595	0	0
4.4	4	13.14	69.57	1.35	2.488	2.613	85.1	97.3
5	4.15	14.33	70.05	1.46	2.485	2.594	0	0
6.1	4.1	16.6	75.4	0	2.485	2.591	0	0
6.1	3.99	17.15	76.71	0	2.5	2.604	0	0
5.1	4.23	14.49	70.77	1.49	2.488	2.598	0	0
6.2	3.8	16.5	77	0	2.481	2.584	0	0
6	4.1	16.6	75.3	0	2.508	2.616	0	0
5.3	4	14.14	71.5	1.25	2.427	2.53	86.1	97.7
4.5	4.2	13.71	69.59	1.1	2.522	2.635	84.9	96.9
5.2	4.35	15.32	71.2	0	2.573	2.69	0	0
6.2	4.19	16.79	75.04	0	2.469	2.577	0	0
5.1	4.18	14.06	70.28	1.58	2.407	2.512	0	0
4.3	3.9	12.7	69.6	1.19	2.594	2.702	86.9	97.8
6.1	3.99	17.1	76.8	0	2.526	2.631	0	0
6.1	3.98	16.9	76.4	0	2.511	2.615	0	0
6.1	3.87	16.5	76.6	0	2.485	2.585	0	0
6.1	3.8	16.8	77.4	0	2.534	2.634	0	0
6	3.95	17	76.7	0	2.552	2.657	0	0
4.6	4.2	13.58	69.04	0	2.415	2.521	0	0
6	3.72	16.6	77.6	0	2.514	2.611	0	0
6.2	4.1	16.51	75.18	0	2.505	2.612	0	0
6.1	3.96	16.63	76.22	0	2.471	2.598	0	0
6	4.1	16.55	75.03	0	2.53	2.638	0	0
5.1	4.15	14.33	71.05	0	2.472	2.579	0	0
3.7	5.27	13	59.46	0	2.447	2.582	0	0
5.2	3.93	14.98	73.76	1.12	2.43	2.568	86.4	97.7
6.2	4.19	16.79	75.04	0	2.465	2.574	0	0
5.1	4.36	14.71	70.37	1.48	2.415	2.525	0	0
4.4	4.46	13.89	67.9	1.33	2.443	2.557	0	0
4	4.07	12.2	66.7	1.34	2.448	2.553	85.4	97.5
6.1	4.12	16.5	75.1	0	2.504	2.611	0	0
4.7	0	0	0	0	0	0	0	0
4.6	3.88	13.3	70.7	1.3	2.436	2.54	84.2	97.3
4.5	4.02	13.3	69.8	1.49	2.482	2.585	85.1	97.8
4.5	4.02	13.3	69.8	1.49	2.482	2.585	85.1	97.8
4.4	4.15	13.1	68.4	1.49	2.483	2.59	85.5	97.3
4.4	4.2	13.3	68.1	1.5	2.45	2.558	85.4	97.4
6.1	4.16	17.3	76	0	2.488	2.596	0	0
6	4.2	17.3	75.7	0	2.533	2.644	0	0
6	4.07	17.1	76.2	0	2.522	2.629	0	0
6	4.03	17	76.3	0	2.523	2.629	0	0
3.8	4.8	12.9	62.6	1.13	2.536	2.664	0	0
6	3.9	16.9	76.8	0	2.505	2.607	0	0
4.7	4.6	13.5	65.9	1.59	2.404	2.52	0	0
4.9	4.3	14.9	71	1.43	2.409	2.518	0	0
5.1	4.3	14.6	70.8	1.28	2.443	2.552	0	0
3.6	4.85	12.4	60.9	1.4	2.45	2.575	0	0
4.4	4.7	14	66.7	1.4	2.422	2.54	0	0
5.1	4.6	14.6	68.3	1.64	2.546	2.67	0	0
3.8	5.83	13.39	56.47	0	2.406	2.555	0	0
4.1	3.98	12.2	67.8	1.07	2.446	2.545	81.6	97.3
4.1	4.3	12	64.08	1.43	2.44	2.55	0	0
0	5.46	21.5	74.6	0.24	2.267	2.397	0	0
4.1	4.06	12.13	66.16	1.33	2.363	2.536	85.4	97.5
4	4.2	12.37	66.4	1.2	2.441	2.543	84.6	97.6
3.7	5.46	12.85	57.6	0	2.415	2.559	0	0
4.1	4.3	12.71	66.1	1.19	2.437	2.547	84.9	96.6
4.4	4	13.13	69.15	1.22	2.447	2.55	84.4	97.7
5.2	4.45	14.3	68.8	1.4	2.446	2.56	0	0
5.1	4.46	14	68.6	1.6	2.443	2.557	0	0
5.1	4.46	14	68.6	1.6	2.443	2.557	0	0
4.6	3.86	13.5	71.39	1.3	2.44	2.538	85.9	97
4.8	4.37	13.9	68.6	1.35	2.45	2.562	0	0
4.8	4	14.4	72	1.18	2.444	2.65	85.5	97.8
5	0	0	0	0	2.509	2.633	0	0
4.7	4	13.07	69.4	1.38	2.547	2.653	86.8	97.1
4.4	3.9	13.5	71.4	1.3	2.448	2.555	85.9	97
5.4	4.15	15	72.4	1.46	2.428	2.533	86.1	97.7
5.5	4	15.41	74.04	1.36	2.45	2.553	86.3	97.8
5.3	4.1	14.8	72.3	1.55	2.516	2.612	85.2	97.7
4.6	6.23	0	0	0	2.337	2.492	0	0
4.9	0	0	0	0	2.463	2.681	0	0
4.8	4.08	13.7	70.2	1.55	2.542	2.65	0	0
6.1	0	0	0	0	2.491	2.596	0	0
7	4.5	18.14	74.91	0	2.351	2.461	0	0
4.6	4.43	13.64	67.54	1.6	2.417	2.529	0	0
5.1	4.3	14.6	70.8	1.28	2.443	2.552	0	0
6	4.11	16.94	75.8	0	2.53	2.638	0	0
5.6	4	15.33	73.91	1.39	2.537	2.651	87.8	97
4.1	4.69	13.02	63.98	1.48	2.458	2.579	85.4	97.8
3.9	4.08	13.15	69	1.39	2.558	2.673	85.5	97.4
4.1	4	13.23	69.38	1.19	2.55	2.66	85.6	97.3
3.9	4.08	13.08	68.81	1.57	2.526	2.647	85	97.3
4.4	3.94	13.25	70.26	1.3	2.532	2.645	85.1	97.5
3.9	4.1	12.01	65.86	1.58	2.502	2.609	85.6	97.3
3.6	4.03	12.39	67.5	1.24	2.558	2.685	84.8	97.09
4.1	4	12.35	67.61	1.38	2.478	2.591	84	97.7
4.1	4	12.31	67.49	1.45	2.498	2.603	83.7	97.5
4.1	4.79	12.95	62.9	1.38	2.517	2.644	0	0
3.9	4	12.51	68.03	1.47	2.47	2.586	83.5	97.7
4	4.39	12.4	64.58	1.52	2.503	2.618	86.2	98
6.1	4.04	16.94	76.2	0	2.514	2.622	0	0
5.5	3.96	14.91	73.44	1.39	2.458	2.568	85.7	97.6
4.8	4.19	14.61	71.31	1.21	2.4	2.505	0	0
4.8	4.02	14.31	71.92	1.17	2.507	2.612	0	0
4.8	3.97	14.24	71.12	1.29	2.394	2.493	0	0
4.1	4.08	12.29	66.78	1.46	2.444	2.548	0	0
4.6	4.15	13.31	68.8	1.33	2.424	2.529	0	0
4.2	4.01	12.63	68.26	1.37	2.443	2.545	0	0
4.1	4	12.48	68.3	1.41	2.451	2.552	85.9	97.8
4	4	13.74	70.88	0	0	0	84.4	97.7
4.7	4.08	14.21	71.28	1.56	2.491	2.598	87	97.7
4.1	4.3	12.37	65.23	1.42	2.449	2.556	85.7	97.1
4.8	4.19	14.57	71.23	1.12	2.399	2.504	0	0
4.7	4.03	13.63	70.45	1.36	2.43	2.532	0	0
4.5	4.1	13.05	68.36	1.47	2.461	2.567	84.9	97.7
4.2	4.2	12.34	65.97	1.32	2.462	2.569	85	97.1
5	4.73	14.74	67.93	1.29	2.52	2.645	0	0
4.2	4.08	13.09	68.84	1.23	2.438	2.534	84.9	97.8
4.2	4.1	12.19	66.36	1.41	2.44	2.539	84.5	97.4
4.2	3.99	13.08	69.51	1.25	2.432	2.536	85.4	97.6
5.2	3.96	15.22	73.97	1.4	2.46	2.56	85.6	97.5
6	4.08	16.6	75.4	0	2.537	2.645	0	0
4.1	4.12	13.08	68.5	1.1	2.423	2.527	85	97.3
4.2	4.08	12.23	66.65	1.14	2.434	2.538	85.6	97.1
4.1	4.05	12.15	66.67	1.38	2.438	2.545	84.9	97.6
4.2	4.1	13.03	68.52	1.12	2.427	2.53	84.9	97
6	3.74	16.65	77.52	0	2.546	2.645	0	0
4.1	4.1	13.31	69.56	1.37	2.537	2.659	83.5	97.5
4.9	4.52	15.07	69.96	1.18	2.56	2.681	0	0
4.8	4.31	14.77	70.83	1.15	2.531	2.645	0	0
4.9	4.36	14.87	70.7	1.2	2.546	2.662	0	0
6	4.09	16.84	75.73	0	2.558	2.667	0	0
3.7	4	12.1	66.6	1.47	0	2.646	86.3	97.2
3.8	4.1	12.1	66	1.41	2.451	2.56	84.9	97.5
4.9	4.63	14.49	68.04	1.6	2.532	2.655	0	0
6.2	4.11	16.62	75.29	0	2.522	2.63	0	0
4	4.69	13.27	64.69	1.6	2.44	2.56	0	0
4.7	4.37	14.28	69.37	1.07	2.558	2.675	0	0
4.9	4.2	14.64	71.33	1.18	2.534	2.645	0	0
4.1	4.01	13.06	69.3	1.36	2.487	2.59	84	97.3
4.6	4.98	14.61	65.9	1.26	2.499	2.63	0	0
4	4	13.15	69.88	1.15	2.52	2.626	85.1	97.1
4.2	4.25	12.86	66.96	1.54	2.451	2.552	85.9	97.8
4	4.03	12.66	68.13	1.673	2.712	2.826	0	0
8.4	5.62	21.93	74.35	0	2.433	2.578	0	0
6	4.08	17.22	76.31	0	2.539	2.647	0	0
4	4	13.13	69.46	1.1	2.443	2.578	84.9	97.3
4.5	4.3	13.42	68.1	1.35	2.425	2.534	0	0
6.1	4.23	17.06	75.22	0	2.492	2.601	0	0
4.5	4.29	13.4	67.95	1.39	2.43	2.539	0	0
4.4	4.6	13.66	66.36	1.53	2.408	2.524	0	0
4.9	3.87	14.89	74.01	0.94	0	0	86.5	97.7
4.4	4.55	13.58	66.49	1.36	2.433	2.549	0	0
5.2	4.5	14.53	69	8.12	2.481	2.598	0	0
4.2	4.08	13.36	69.47	1.24	2.521	2.625	86.3	97.7
4.2	4.08	13.13	68.94	0.99	2.45	2.548	84.7	97.8
5.1	4.21	14.4	70.75	1.28	2.411	2.517	0	0
4.2	4.13	13.01	68.26	1.13	2.432	2.541	84	97.1
4.2	4	13.07	69.32	1.15	2.439	2.543	83.2	97.2
4.6	4	13.42	70.27	1.23	2.433	2.835	86.3	97.4
5.1	4.49	14.53	69.08	1.48	2.488	2.605	0	0
5.1	4.53	14.6	68.95	1.48	2.486	2.604	0	0
6	3.98	16.74	76.24	0	2.566	2.664	0	0
4.8	3.98	14.06	71.7	0.97	2.414	2.514	85.3	97.2
6.2	4.1	16.5	75.3	0	2.371	2.472	0	0
5.5	4.1	13.67	70.04	1.53	2.342	2.442	0	0
3.8	4.01	12.03	66.68	1.27	2.451	2.549	86.4	96
5	4.64	15.15	69.36	1.43	2.485	2.605	0	0
4.9	4.61	15.22	69.73	1.09	2.487	2.605	0	0
4.9	4.07	14.74	72.38	1.2	2.381	2.484	86.5	95.9
4.8	4.04	14.02	71.19	1.03	2.378	2.476	86.3	97.8
5	4.36	14.37	69.69	1.15	2.525	2.64	0	0
4.3	4.45	13.09	66.02	1.45	2.384	2.495	0	0
4.6	4	13.48	70.4	1.23	2.427	2.532	84.2	97.3
5.1	4.21	14.32	70.61	1.37	2.481	2.59	0	0
4.8	4.92	13.18	62.7	1.7	2.437	2.563	0	0
4.3	4.04	13.06	69.07	1.51	2.433	2.537	85.8	97.9
4.5	4.5	13.55	66.8	1.18	2.442	2.557	0	0
3.9	4.06	12.26	66.88	1.41	2.488	2.586	86.4	95.9
6.2	3.88	16.52	76.5	0	2.501	2.602	0	0
6.2	4.16	16.73	75.11	0	2.463	2.57	0	0
4.6	4.18	13.2	68.35	1.15	2.387	2.491	0	0
4.6	4.21	13.23	68.17	1.07	2.388	2.493	0	0
6.2	4.15	16.77	75.28	0	2.474	2.581	0	0
4.3	4	13.1	69.7	1.3	2.443	2.544	83.9	97.1
6.11	0	0	0	0	0	2.653	0	0
];
Plen=length(P);
Pvalue=0;
Pvalue1=0;
Pvalue2=0;
Pvalue3=0;
Pvalue4=0;
for i=1:Plen
    mark = 0;
    for j=1:9
        if(P(i,j)==0)
            mark=1;
        end
    end
    if(mark==0)%全部是非0数据
        Pvalue=Pvalue+1;
        PP(Pvalue,:)=P(i,:);
        %%加上常数项
        if(Y(i,1))
            Pvalue1=Pvalue1+1;
            P1(Pvalue1,:)=[P(i,:) 1 Y(i,1)];
        end
        if(Y(i,2))
            Pvalue2=Pvalue2+1;
            P2(Pvalue2,:)=[P(i,:) 1 Y(i,2)];
        end
        if(Y(i,3))
            Pvalue3=Pvalue3+1;
            P3(Pvalue3,:)=[P(i,:) 1 Y(i,3)];
        end
        if(Y(i,4))
            Pvalue4=Pvalue4+1;
            P4(Pvalue4,:)=[P(i,:) 1 Y(i,4)];
        end
        
    end
end
%处理得出各个指标和相关参数的非零关系P1,P2,P3,P4
%b = regress(P1(:,10),P1(:,1:9));
%[b,bint,r,rint,stats] = regress(P1(:,10),P1(:,1:9));
[b1,bint1,r1,rint1,stats1] = regress(P1(:,11),P1(:,1:10));
rcoplot(r1,rint1);
[b2,bint2,r2,rint2,stats2] = regress(P2(:,11),P2(:,1:10));
rcoplot(r2,rint2);
[b3,bint3,r3,rint3,stats3] = regress(P3(:,11),P3(:,1:10));
rcoplot(r3,rint3);
[b4,bint4,r4,rint4,stats4] = regress(P4(:,11),P4(:,1:10));
rcoplot(r4,rint4);

[PC,score,latent,tsquare]=princomp(PP);
%PP(1,:)=PP(1,:)*1000;
%covx = cov(PP);
%[PC1,score1,latent1,tsquare1]=princomp(PP);
%[COEFF, LATENT] = PCACOV(PP);

clc
%计算主分量与四个标准的关系
%Pvalue=0;
Pvalue1=0;
Pvalue2=0;
Pvalue3=0;
Pvalue4=0;
PC_2=PC(:,1:2);
PPP=PP*PC_2;%两个主分量
Plen=length(PPP);
for i=1:Plen
    
       if(Y(i,1))
            Pvalue1=Pvalue1+1;
            P_1(Pvalue1,:)=[PPP(i,:) 1 Y(i,1)];
        end
        if(Y(i,2))
            Pvalue2=Pvalue2+1;
            P_2(Pvalue2,:)=[PPP(i,:) 1 Y(i,2)];
        end
        if(Y(i,3))
            Pvalue3=Pvalue3+1;
            P_3(Pvalue3,:)=[PPP(i,:) 1 Y(i,3)];
        end
        if(Y(i,4))
            Pvalue4=Pvalue4+1;
            P4(Pvalue4,:)=[P(i,:) 1 Y(i,4)];
        end
        
    end
end




%Pcov=cov(PP)



    



        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -