⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pixman-source.c

📁 嵌入式图形库
💻 C
📖 第 1 页 / 共 2 页
字号:
			    *(buffer) = _gradient_walker_pixel (&walker, t);                        }                        buffer += 1;                        t      += inc;                    }                }	    }	}	else /* projective transformation */	{	    pixman_fixed_48_16_t t;	    if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL)	    {		register uint32_t color;		if (v.vector[2] == 0)		{		    t = 0;		}		else		{		    pixman_fixed_48_16_t x, y;		    x = ((pixman_fixed_48_16_t) v.vector[0] << 16) / v.vector[2];		    y = ((pixman_fixed_48_16_t) v.vector[1] << 16) / v.vector[2];		    t = ((a * x + b * y) >> 16) + off;		} 		color = _gradient_walker_pixel( &walker, t );		while (buffer < end)		    *(buffer++) = color;	    }	    else	    {		while (buffer < end)		{		    if (!mask || *mask++ & maskBits)		    {			if (v.vector[2] == 0) {			    t = 0;			} else {			    pixman_fixed_48_16_t x, y;			    x = ((pixman_fixed_48_16_t)v.vector[0] << 16) / v.vector[2];			    y = ((pixman_fixed_48_16_t)v.vector[1] << 16) / v.vector[2];			    t = ((a*x + b*y) >> 16) + off;			}			*(buffer) = _gradient_walker_pixel (&walker, t);		    }		    ++buffer;		    v.vector[0] += unit.vector[0];		    v.vector[1] += unit.vector[1];		    v.vector[2] += unit.vector[2];		}            }        }    } else {/* * In the radial gradient problem we are given two circles (c₁,r₁) and * (c₂,r₂) that define the gradient itself. Then, for any point p, we * must compute the value(s) of t within [0.0, 1.0] representing the * circle(s) that would color the point. * * There are potentially two values of t since the point p can be * colored by both sides of the circle, (which happens whenever one * circle is not entirely contained within the other). * * If we solve for a value of t that is outside of [0.0, 1.0] then we * use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a * value within [0.0, 1.0]. * * Here is an illustration of the problem: * *              p₂ *           p  • *           •   ╲ *        ·       ╲r₂ *  p₁ ·           ╲ *  •              θ╲ *   ╲             ╌╌• *    ╲r₁        ·   c₂ *    θ╲    · *    ╌╌• *      c₁ * * Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two * points p₁ and p₂ on the two circles are collinear with p. Then, the * desired value of t is the ratio of the length of p₁p to the length * of p₁p₂. * * So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t. * We can also write six equations that constrain the problem: * * Point p₁ is a distance r₁ from c₁ at an angle of θ: * *	1. p₁x = c₁x + r₁·cos θ *	2. p₁y = c₁y + r₁·sin θ * * Point p₂ is a distance r₂ from c₂ at an angle of θ: * *	3. p₂x = c₂x + r2·cos θ *	4. p₂y = c₂y + r2·sin θ * * Point p lies at a fraction t along the line segment p₁p₂: * *	5. px = t·p₂x + (1-t)·p₁x *	6. py = t·p₂y + (1-t)·p₁y * * To solve, first subtitute 1-4 into 5 and 6: * * px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ) * py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ) * * Then solve each for cos θ and sin θ expressed as a function of t: * * cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁) * sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁) * * To simplify this a bit, we define new variables for several of the * common terms as shown below: * *              p₂ *           p  • *           •   ╲ *        ·  ┆    ╲r₂ *  p₁ ·     ┆     ╲ *  •     pdy┆      ╲ *   ╲       ┆       •c₂ *    ╲r₁    ┆   ·   ┆ *     ╲    ·┆       ┆cdy *      •╌╌╌╌┴╌╌╌╌╌╌╌┘ *    c₁  pdx   cdx * * cdx = (c₂x - c₁x) * cdy = (c₂y - c₁y) *  dr =  r₂-r₁ * pdx =  px - c₁x * pdy =  py - c₁y * * Note that cdx, cdy, and dr do not depend on point p at all, so can * be pre-computed for the entire gradient. The simplifed equations * are now: * * cos θ = (-cdx·t + pdx) / (dr·t + r₁) * sin θ = (-cdy·t + pdy) / (dr·t + r₁) * * Finally, to get a single function of t and eliminate the last * unknown θ, we use the identity sin²θ + cos²θ = 1. First, square * each equation, (we knew a quadratic was coming since it must be * possible to obtain two solutions in some cases): * * cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²) * sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²) * * Then add both together, set the result equal to 1, and express as a * standard quadratic equation in t of the form At² + Bt + C = 0 * * (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0 * * In other words: * * A = cdx² + cdy² - dr² * B = -2·(pdx·cdx + pdy·cdy + r₁·dr) * C = pdx² + pdy² - r₁² * * And again, notice that A does not depend on p, so can be * precomputed. From here we just use the quadratic formula to solve * for t: * * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A */        /* radial or conical */        pixman_bool_t affine = TRUE;        double cx = 1.;        double cy = 0.;        double cz = 0.;	double rx = x + 0.5;	double ry = y + 0.5;        double rz = 1.;        if (pict->common.transform) {            pixman_vector_t v;            /* reference point is the center of the pixel */            v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2;            v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2;            v.vector[2] = pixman_fixed_1;            if (!pixman_transform_point_3d (pict->common.transform, &v))                return;            cx = pict->common.transform->matrix[0][0]/65536.;            cy = pict->common.transform->matrix[1][0]/65536.;            cz = pict->common.transform->matrix[2][0]/65536.;            rx = v.vector[0]/65536.;            ry = v.vector[1]/65536.;            rz = v.vector[2]/65536.;            affine = pict->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1;        }        if (pict->common.type == RADIAL) {	    radial_gradient_t *radial = (radial_gradient_t *)pict;            if (affine) {                while (buffer < end) {		    if (!mask || *mask++ & maskBits)		    {			double pdx, pdy;			double B, C;			double det;			double c1x = radial->c1.x / 65536.0;			double c1y = radial->c1.y / 65536.0;			double r1  = radial->c1.radius / 65536.0;                        pixman_fixed_48_16_t t;			pdx = rx - c1x;			pdy = ry - c1y;			B = -2 * (  pdx * radial->cdx				    + pdy * radial->cdy				    + r1 * radial->dr);			C = (pdx * pdx + pdy * pdy - r1 * r1);                        det = (B * B) - (4 * radial->A * C);			if (det < 0.0)			    det = 0.0;			if (radial->A < 0)			    t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536);			else			    t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536);			*(buffer) = _gradient_walker_pixel (&walker, t);		    }		    ++buffer;                    rx += cx;                    ry += cy;                }            } else {		/* projective */                while (buffer < end) {		    if (!mask || *mask++ & maskBits)		    {			double pdx, pdy;			double B, C;			double det;			double c1x = radial->c1.x / 65536.0;			double c1y = radial->c1.y / 65536.0;			double r1  = radial->c1.radius / 65536.0;                        pixman_fixed_48_16_t t;			double x, y;			if (rz != 0) {			    x = rx/rz;			    y = ry/rz;			} else {			    x = y = 0.;			}			pdx = x - c1x;			pdy = y - c1y;			B = -2 * (  pdx * radial->cdx				    + pdy * radial->cdy				    + r1 * radial->dr);			C = (pdx * pdx + pdy * pdy - r1 * r1);                        det = (B * B) - (4 * radial->A * C);			if (det < 0.0)			    det = 0.0;			if (radial->A < 0)			    t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536);			else			    t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536);			*(buffer) = _gradient_walker_pixel (&walker, t);		    }		    ++buffer;                    rx += cx;                    ry += cy;		    rz += cz;                }            }        } else /* SourcePictTypeConical */ {	    conical_gradient_t *conical = (conical_gradient_t *)pict;            double a = conical->angle/(180.*65536);            if (affine) {                rx -= conical->center.x/65536.;                ry -= conical->center.y/65536.;                while (buffer < end) {		    double angle;                    if (!mask || *mask++ & maskBits)		    {                        pixman_fixed_48_16_t   t;                        angle = atan2(ry, rx) + a;			t     = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI)));			*(buffer) = _gradient_walker_pixel (&walker, t);		    }                    ++buffer;                    rx += cx;                    ry += cy;                }            } else {                while (buffer < end) {                    double x, y;                    double angle;                    if (!mask || *mask++ & maskBits)                    {			pixman_fixed_48_16_t  t;			if (rz != 0) {			    x = rx/rz;			    y = ry/rz;			} else {			    x = y = 0.;			}			x -= conical->center.x/65536.;			y -= conical->center.y/65536.;			angle = atan2(y, x) + a;			t     = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI)));			*(buffer) = _gradient_walker_pixel (&walker, t);		    }                    ++buffer;                    rx += cx;                    ry += cy;                    rz += cz;                }            }        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -