⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example2.html

📁 All the tool for build a network able to reconize any shapes. Very complete, a good base for anythi
💻 HTML
字号:
<html>
	<head>
		<meta http-equiv="Keywords" content="neural, neural net, neural network, neural programming, mlp, backpropagation, back propagation, multilayer, perceptron, java, java package, example, class, training, train, incremental, batch, mini-batch, mini batch, generalized, modular, feed forward, feed, forward, cross validation, cross, validation, test, free, source, code">
        <meta http-equiv="Content-Language" content="en-us">
		<meta http-equiv="Description" content="This work is a java implementation of feed forward neural nets. Using this package, you can easily build and train multilayer, generalized feed forward, modular feed forward nets with any number of layers and any number of units.">
		<title>Example 2 - FEED FORWARD NEURAL NETWORKS - A JAVA IMPLEMENTATION 
        v2.0</title>
		<META HTTP-EQUIV="pragma" CONTENT="no-cache">
		<META HTTP-EQUIV="Expires" CONTENT="Fri, 30 May 1980 01:00:00 GMT">
	</head>
	<body bgcolor="#e2e0e0" style="font-family: Verdana">
		<div align="center">
          <center>
		<table width="90%" border="0" cellspacing="20" cellpadding="0" style="border-collapse: collapse" bordercolor="#111111">
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			<tr>
				<td align="left">
					<b><font size="4"><a name="top"></a>FEED FORWARD NEURAL 
                    NETWORK<span lang="tr">S</span> - A JAVA IMPLEMENTATION v2.0 </font></b>
                    <br><font size="5"><b>Example 2</b></font></td>
			</tr>
			<tr>
				<td align="left">
					In this example, we wish to resolve a classification 
                    problem. We have data taken from a number of crabs. These 
                    are measurements such as frontal lip, rear width, length, 
                    sex etc. We create and train a net which be able to 
                    determine the sex of a crab using measurements.<br>
                    <br>
                    - Create a multilayer perceptron with four layers: One input 
                    layer with seven units; two hidden layers each with ten 
                    neurons (tanh activation function); one output layer with 
                    one neuron (tanh function). Here all neurons will be 
                    connected to all neurons in the next layer.<br>
                    - Save the configuration of the net.<br>
                    - Create three pattern sets with 7 input and 1 output 
                    values. First create a pattern set for training, then create 
                    a pattern set for cross validation and then create a pattern 
                    set for testing.<br>
                    - Show the error ratio (crossvalerror) before training.<br>
                    - Train the net using mini batch training, until 
                    crossvalerror &lt; 0.02, so that it learns how to distinguish a 
                    female crab by using some measurements (alternatively you 
                    can use incremental training). <br>
                    - Finally, check the error using test data.<br>
                    - Now that the training is over, save the weights of the 
                    net.<br>
                    - Clean up the objects.<br>
                    - Recreate the net using previously saved configuration and 
                    weig<span lang="tr">h</span>ts.<br>
                    - Test it.<br>
                    <br>
                    training data are from a tutorial of the &quot;NeuroSolutions&quot; 
                    software<br>
                    <a href="http://www.neurosolutions.com/">
                    http://www.neurosolutions.com/</a></td>
			</tr>
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			</table>
	      </center>
        </div>
	</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -