⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example1.html

📁 All the tool for build a network able to reconize any shapes. Very complete, a good base for anythi
💻 HTML
字号:
<html>
	<head>
		<meta http-equiv="Keywords" content="neural, neural net, neural network, neural programming, mlp, backpropagation, back propagation, multilayer, perceptron, java, java package, example, class, training, train, incremental, batch, mini-batch, mini batch, generalized, modular, feed forward, feed, forward, cross validation, cross, validation, test, free, source, code">
        <meta http-equiv="Content-Language" content="en-us">
		<meta http-equiv="Description" content="This work is a java implementation of feed forward neural nets. Using this package, you can easily build and train multilayer, generalized feed forward, modular feed forward nets with any number of layers and any number of units.">
		<title>Example 1 - FEED FORWARD NEURAL NETWORKS - A JAVA IMPLEMENTATION 
        v2.0</title>
		<META HTTP-EQUIV="pragma" CONTENT="no-cache">
		<META HTTP-EQUIV="Expires" CONTENT="Fri, 30 May 1980 01:00:00 GMT">
	</head>
	<body bgcolor="#e2e0e0" style="font-family: Verdana">
		<div align="center">
          <center>
		<table width="90%" border="0" cellspacing="20" cellpadding="0" style="border-collapse: collapse" bordercolor="#111111">
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			<tr>
				<td align="left">
					<b><font size="4"><a name="top"></a>FEED FORWARD NEURAL 
                    NETWORK<span lang="tr">S</span> - A JAVA IMPLEMENTATION v2.0 </font></b>
                    <br><font size="5"><b>Example 1</b></font></td>
			</tr>
			<tr>
				<td align="left">
					In this example, we:<br>
                    <br>
                    - Create a generalized feed forward net using a previously 
                    saved configuration.<br>
                    - Create a pattern set with 2 input and 1 output values; 
                    randomly choose 80% of data for training, 10% for cross 
                    validation, 10% for testing. The function to be learned is: 
                    y = x1 + x2.<br>
                    - Display the error rate (crossvalerror) before training.<br>
                    - Train it using batch training until crossvalerror &lt; 0.02 
                    so that it learns how to compute a simple function such as y 
                    = x1 + x2. Note that this is one of the easiest function to 
                    learn. If we had chosen another function instead of y = x1 + 
                    x2, we would need much more training.<br>
                    - Check the error using test data (testerror).<br>
                    - Save its weights.<br>
                    - Clean up the objects which are used in the example.<br>
                    - Recreate the net using previously saved configuration and 
                    weigts and use the trained net to calculate some numbers 
                    (you could use this part in a separate java class).<br>
                    <br>
                    <img border="0" src="example1.gif" width="250" height="260"></td>
			</tr>
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			</table>
	      </center>
        </div>
	</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -