📄 example3.html
字号:
<html>
<head>
<meta http-equiv="Keywords" content="neural, neural net, neural network, neural programming, mlp, backpropagation, back propagation, multilayer, perceptron, java, java package, example, class, training, train, incremental, batch, mini-batch, mini batch, generalized, modular, feed forward, feed, forward, cross validation, cross, validation, test, free, source, code">
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Description" content="This work is a java implementation of feed forward neural nets. Using this package, you can easily build and train multilayer, generalized feed forward, modular feed forward nets with any number of layers and any number of units.">
<title>Example 3 - FEED FORWARD NEURAL NETWORKS - A JAVA IMPLEMENTATION
v2.0</title>
<META HTTP-EQUIV="pragma" CONTENT="no-cache">
<META HTTP-EQUIV="Expires" CONTENT="Fri, 30 May 1980 01:00:00 GMT">
</head>
<body bgcolor="#e2e0e0" style="font-family: Verdana">
<div align="center">
<center>
<table width="90%" border="0" cellspacing="20" cellpadding="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td align="left">
<a href="index.html">Home</a></td>
</tr>
<tr>
<td align="left">
<b><font size="4"><a name="top"></a>FEED FORWARD NEURAL
NETWORK<span lang="tr">S</span> - A JAVA IMPLEMENTATION v2.0 </font></b>
<br><font size="5"><b>Example </b></font><span lang="tr">
<font size="5"><b>3</b></font></span></td>
</tr>
<tr>
<td align="left">
This is an example of an untypical usage of the
<span lang="tr">package</span>. We don't use pattern<span lang="tr">
</span>sets and error calculation methods, we use
incremental training with patterns created on the fly.<br>
<br>
Here we create a very simple multilayer perceptron and train
it for a simple function.<br>
<br>
- Create a multilayer perceptron with three layers: one
input layer with two units; one hidden layer with three
neurons, using tanh function; one output layer with one
neuron using linear function.<br>
- Create random input values, calculate target by the
formula y = sin ( x1 + x2 ) and train the net with these
values without using a pattern set.<br>
- Test it.</td>
</tr>
<tr>
<td align="left">
<a href="index.html">Home</a></td>
</tr>
</table>
</center>
</div>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -