⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example3.html

📁 All the tool for build a network able to reconize any shapes. Very complete, a good base for anythi
💻 HTML
字号:
<html>
	<head>
		<meta http-equiv="Keywords" content="neural, neural net, neural network, neural programming, mlp, backpropagation, back propagation, multilayer, perceptron, java, java package, example, class, training, train, incremental, batch, mini-batch, mini batch, generalized, modular, feed forward, feed, forward, cross validation, cross, validation, test, free, source, code">
        <meta http-equiv="Content-Language" content="en-us">
		<meta http-equiv="Description" content="This work is a java implementation of feed forward neural nets. Using this package, you can easily build and train multilayer, generalized feed forward, modular feed forward nets with any number of layers and any number of units.">
		<title>Example 3 - FEED FORWARD NEURAL NETWORKS - A JAVA IMPLEMENTATION 
        v2.0</title>
		<META HTTP-EQUIV="pragma" CONTENT="no-cache">
		<META HTTP-EQUIV="Expires" CONTENT="Fri, 30 May 1980 01:00:00 GMT">
	</head>
	<body bgcolor="#e2e0e0" style="font-family: Verdana">
		<div align="center">
          <center>
		<table width="90%" border="0" cellspacing="20" cellpadding="0" style="border-collapse: collapse" bordercolor="#111111">
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			<tr>
				<td align="left">
					<b><font size="4"><a name="top"></a>FEED FORWARD NEURAL 
                    NETWORK<span lang="tr">S</span> - A JAVA IMPLEMENTATION v2.0 </font></b>
                    <br><font size="5"><b>Example </b></font><span lang="tr">
                    <font size="5"><b>3</b></font></span></td>
			</tr>
			<tr>
				<td align="left">
					This is an example of an untypical usage of the
                    <span lang="tr">package</span>. We don't use pattern<span lang="tr">
                    </span>sets and error calculation methods, we use 
                    incremental training with patterns created on the fly.<br>
                    <br>
                    Here we create a very simple multilayer perceptron and train 
                    it for a simple function.<br>
                    <br>
                    - Create a multilayer perceptron with three layers: one 
                    input layer with two units; one hidden layer with three 
                    neurons, using tanh function; one output layer with one 
                    neuron using linear function.<br>
                    - Create random input values, calculate target by the 
                    formula y = sin ( x1 + x2 ) and train the net with these 
                    values without using a pattern set.<br>
                    - Test it.</td>
			</tr>
			<tr>
				<td align="left">
					<a href="index.html">Home</a></td>
			</tr>
			</table>
	      </center>
        </div>
	</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -