📄 stbc22_est.m
字号:
function [FER,FER_uncoded,SER,SER_uncoded, BER, BER_uncoded]=stbc22_est(channel_model,K,Num,no_tx_antennas,no_rx_antennas,modulation)%SNR upto 20 dBsEbNo=[0:2:20];%N, M: number of transmit and receive antennasN=no_tx_antennas;M=no_rx_antennas;%initialize countidx = 1;h=waitbar(0,'Percentage Completed');set(h,'Position',[230 60 275.25 56.25]);set(h,'name','Please wait...');wb=9.09; for SNR=EbNo sigma=0.5/(10^(SNR/10)); % Num -> number of packets for packet_count=1:Num % we are interested in transmitting 'K' SYMBOLS not bits. Hence, K*2 for QPSK% etc. switch (modulation) case 'BPSK ' data=randint(K,N); BIT=1; case 'QPSK ' data=randint(K*2,N); BIT=2; case '8PSK ' data=randint(K*3,N); BIT=3; case '16QAM' data=randint(K*4,N); BIT=4; otherwise disp('No Modulation') endtx_bits=data.';temp=[];temp1=[];for i=1:N [temp1 s P]=tx_modulate(tx_bits(i,:),modulation); temp=[temp; temp1]; temp1=0;end%ready to transmit symbols of length 'K'X=temp.';fr_length=length(X); % block coding-Alamouti x0=X(:,1);% required to verify a 1x1 system x1=X; x2(:,1)=-conj(X(:,2)); x2(:,2)=conj(X(:,1)); for n=1:M R1=[];R2=[];R3=[];y1=[];%configure pilot 1 for one antennapilot1=[0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 -1 1 -1 1 1];%extend the pilot symbols for full frame lengthpilots1=(repmat(pilot1,fr_length,1));%append the pilot1 symbols to the first antenna symbolX1=[pilots1 x1(:,1)];%configure pilot 2 for the second antenna. Pilot 2 is orthogonal to pilot 1pilot2=[1 -1 -1 -1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0];%extend the pilot symbols for full frame lengthpilots2=(repmat(pilot2,fr_length,1));%append the pilot2 symbols to the second antenna symbolX2=[pilots2 x1(:,2)];%assign the symbols to be transmitted to variable y1 instead of x1. y1 is%the signal transmitted in the first interval period from BOTH the antennasy1=[X1 X2];% transmit through channelfor i=1:fr_length%channel coefficient for first antenna if channel_model=='AWGN ' H1(i)=ones(1,1);else H1(i)=sqrt(0.5)*(randn(1,1)+j*randn(1,1));end %received signal per receiver antenna R1(i,:)=H1(i)*y1(i,1:21)/sqrt(N)+sqrt(sigma)*(randn(1,1)+j*randn(1,1));% upto 21st column constitutes the transmission in the %first symbol interval from the FIRST antenna %i R2(i,1)=H1(i)*x2(i,1)/sqrt(N)+sqrt(sigma)*(randn(1,1)+j*randn(1,1));%transmission in the second symbol interval from the FIRST %antenna.Note no pilot symbols are being transmitted as the assumption is that the channel does %not change through two symbol intervalsendfor i=1:fr_length%channel coefficient for second antenna if channel_model=='AWGN ' H2(i)=ones(1,1);else H2(i)=sqrt(0.5)*(randn(1,1)+j*randn(1,1));end %received signal per receiver antenna R3(i,:)=H2(i)*y1(i,22:end)/sqrt(N)+sqrt(sigma)*(randn(1,1)+j*randn(1,1));% column 22 till 42nd constitutes the transmission % in the first symbol interval from the SECOND antenna R2(i,2)=H2(i)*x2(i,2)/sqrt(N)+sqrt(sigma)*(randn(1,1)+j*randn(1,1));%transmission in the second symbol interval from the SECOND %antenna.Note no pilot symbols are being transmitted as %the assumption is that the channel does %not change through two symbol intervalsend%gather the R1 matrix for transmission during the first symbol intervalR1=[R1 R3];%extract the training symbolstr_symbols1=R1(:,1:20); tr_symbols2=R1(:,22:41); %reconfigure the received signal matrix for first symbol interval from BOTH%the antennastemp1=[R1(:,21) R1(:,42)];%assign to r1 and r2. The 'sum' function denotes summing at the outputs of%BOTH antennasr1(:,n)=sum(temp1,2);r2(:,n)=sum(R2,2);%estimate channel using MMSEfor i=1:fr_length H_est1(i,1)=mean(tr_symbols1(i,:).*conj(pilot1));endfor i=1:fr_length H_est2(i,1)=mean(tr_symbols2(i,:).*conj(pilot2));end%final estimated channel coefficients to be used for receptionH_est=[H_est1 H_est2];%original (perfect) channel coefficients used to transmit the signalsH=[H1.' H2.'];%absolute ESTIMATED channel coefficients to be used later in this programH_estabs(:,n)=sum(abs(H_est).^2,2);% demodulate the received signals z1(:,n)=r1(:,n).*conj(H_est(:,1))+conj(r2(:,n)).*H_est(:,2); z2(:,n)=r1(:,n).*conj(H_est(:,2))-conj(r2(:,n)).*H_est(:,1);end%uncoded(1,1)TRANSMITTED signal. Note we use original channel coefficients, since this is the transmitted signal r01=H(:,1).*x0+sqrt(sigma)*(randn(fr_length,1)+j*randn(fr_length,1));%form estimatesfor m=1:P d01(:,m)=abs(r01-H_est(:,1)*s(m)).^2; % uncoded signal%coded signals d1(:,m)=abs(sum(z1,2)-s(m)).^2+(-1+sum(H_estabs,2))*abs(s(m))^2; d2(:,m)=abs(sum(z2,2)-s(m)).^2+(-1+sum(H_estabs,2))*abs(s(m))^2;end % determine the minimum of estimates %decision for detecting uncoded [y0,i0]=min((d01),[],2); s0d=s(i0).'; clear d01 %decision for detecting s1 [y1,i1]=min(d1,[],2); s1d=s(i1).'; clear d1%decision for detecting s2 [y2,i2]=min(d2,[],2); s2d=s(i2).'; clear d2% form received symbols Xd=[s1d s2d]; %determine symbol errors error_un(packet_count)=sum(X(:,1)~=s0d);% for uncodedtemp1=X>0;temp2=Xd>0;error(packet_count)=sum(sum(temp1~=temp2));% for coded end % end of FOR loop for "packet_count"%calculate FER, SER and BER for current idx%for uncoded signal SER_uncoded(idx)=sum(error_un)/(Num*K); BER_uncoded(idx)=SER_uncoded(idx)/BIT; FER_uncoded(idx)=SER_uncoded(idx)*K;%for coded signal SER(idx)=sum(error)/(Num*K); BER(idx)=SER(idx)/BIT; FER(idx)=SER(idx)*K; %increment idx idx=idx + 1; str_bar=[num2str(wb) '% Completed'];waitbar(wb/100,h,str_bar);wb=wb+9.09; end % end of FOR loop for SNR close(h);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -