⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fastcosinetransformer.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.transform;import java.io.Serializable;import org.apache.commons.math.analysis.*;import org.apache.commons.math.complex.*;import org.apache.commons.math.MathException;/** * Implements the <a href="http://documents.wolfram.com/v5/Add-onsLinks/ * StandardPackages/LinearAlgebra/FourierTrig.html">Fast Cosine Transform</a> * for transformation of one-dimensional data sets. For reference, see * <b>Fast Fourier Transforms</b>, ISBN 0849371635, chapter 3. * <p> * FCT is its own inverse, up to a multiplier depending on conventions. * The equations are listed in the comments of the corresponding methods.</p> * <p> * Different from FFT and FST, FCT requires the length of data set to be * power of 2 plus one. Users should especially pay attention to the * function transformation on how this affects the sampling.</p> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class FastCosineTransformer implements Serializable {    /** serializable version identifier */    static final long serialVersionUID = -7673941545134707766L;    /**     * Construct a default transformer.     */    public FastCosineTransformer() {        super();    }    /**     * Transform the given real data set.     * <p>     * The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +     *                        \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $     * </p>     *      * @param f the real data array to be transformed     * @return the real transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] transform(double f[]) throws MathException,        IllegalArgumentException {        return fct(f);    }    /**     * Transform the given real function, sampled on the given interval.     * <p>     * The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +     *                        \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $     * </p>     *      * @param f the function to be sampled and transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the real transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] transform(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = FastFourierTransformer.sample(f, min, max, n);        return fct(data);    }    /**     * Transform the given real data set.     * <p>     * The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +     *                        \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $     * </p>     *      * @param f the real data array to be transformed     * @return the real transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] transform2(double f[]) throws MathException,        IllegalArgumentException {        double scaling_coefficient = Math.sqrt(2.0 / (f.length-1));        return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);    }    /**     * Transform the given real function, sampled on the given interval.     * <p>     * The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +     *                        \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $     *     * </p>     *      * @param f the function to be sampled and transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the real transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] transform2(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = FastFourierTransformer.sample(f, min, max, n);        double scaling_coefficient = Math.sqrt(2.0 / (n-1));        return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);    }    /**     * Inversely transform the given real data set.     * <p>     * The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +     *                        (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $     * </p>     *      * @param f the real data array to be inversely transformed     * @return the real inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] inversetransform(double f[]) throws MathException,        IllegalArgumentException {        double scaling_coefficient = 2.0 / (f.length - 1);        return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);    }    /**     * Inversely transform the given real function, sampled on the given interval.     * <p>     * The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +     *                        (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $     * </p>     *      * @param f the function to be sampled and inversely transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the real inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] inversetransform(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = FastFourierTransformer.sample(f, min, max, n);        double scaling_coefficient = 2.0 / (n - 1);        return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);    }    /**     * Inversely transform the given real data set.     * <p>     * The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +     *                        \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $     * </p>     *      * @param f the real data array to be inversely transformed     * @return the real inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] inversetransform2(double f[]) throws MathException,        IllegalArgumentException {        return transform2(f);    }    /**     * Inversely transform the given real function, sampled on the given interval.     * <p>     * The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +     *                        \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $     * </p>     *      * @param f the function to be sampled and inversely transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the real inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public double[] inversetransform2(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        return transform2(f, min, max, n);    }    /**     * Perform the FCT algorithm (including inverse).     *     * @param f the real data array to be transformed     * @return the real transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    protected double[] fct(double f[]) throws MathException,        IllegalArgumentException {        double A, B, C, F1, x[], F[] = new double[f.length];        int N = f.length - 1;        if (!FastFourierTransformer.isPowerOf2(N)) {            throw new IllegalArgumentException                ("Number of samples not power of 2 plus one: " + f.length);        }        if (N == 1) {       // trivial case            F[0] = 0.5 * (f[0] + f[1]);            F[1] = 0.5 * (f[0] - f[1]);            return F;        }        // construct a new array and perform FFT on it        x = new double[N];        x[0] = 0.5 * (f[0] + f[N]);        x[N >> 1] = f[N >> 1];        F1 = 0.5 * (f[0] - f[N]);   // temporary variable for F[1]        for (int i = 1; i < (N >> 1); i++) {            A = 0.5 * (f[i] + f[N-i]);            B = Math.sin(i * Math.PI / N) * (f[i] - f[N-i]);            C = Math.cos(i * Math.PI / N) * (f[i] - f[N-i]);            x[i] = A - B;            x[N-i] = A + B;            F1 += C;        }        FastFourierTransformer transformer = new FastFourierTransformer();        Complex y[] = transformer.transform(x);        // reconstruct the FCT result for the original array        F[0] = y[0].getReal();        F[1] = F1;        for (int i = 1; i < (N >> 1); i++) {            F[2*i] = y[i].getReal();            F[2*i+1] = F[2*i-1] - y[i].getImaginary();        }        F[N] = y[N >> 1].getReal();        return F;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -