⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fastfouriertransformer.java

📁 Apache的common math数学软件包
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.transform;import java.io.Serializable;import org.apache.commons.math.analysis.*;import org.apache.commons.math.complex.*;import org.apache.commons.math.MathException;/** * Implements the <a href="http://mathworld.wolfram.com/FastFourierTransform.html"> * Fast Fourier Transform</a> for transformation of one-dimensional data sets. * For reference, see <b>Applied Numerical Linear Algebra</b>, ISBN 0898713897, * chapter 6. * <p> * There are several conventions for the definition of FFT and inverse FFT, * mainly on different coefficient and exponent. Here the equations are listed * in the comments of the corresponding methods.</p> * <p> * We require the length of data set to be power of 2, this greatly simplifies * and speeds up the code. Users can pad the data with zeros to meet this * requirement. There are other flavors of FFT, for reference, see S. Winograd, * <i>On computing the discrete Fourier transform</i>, Mathematics of Computation, * 32 (1978), 175 - 199.</p> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class FastFourierTransformer implements Serializable {    /** serializable version identifier */    static final long serialVersionUID = 5138259215438106000L;    /** array of the roots of unity */    private Complex omega[] = new Complex[0];    /**     * |omegaCount| is the length of lasted computed omega[]. omegaCount     * is positive for forward transform and negative for inverse transform.     */    private int omegaCount = 0;    /**     * Construct a default transformer.     */    public FastFourierTransformer() {        super();    }    /**     * Transform the given real data set.     * <p>     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $     * </p>     *      * @param f the real data array to be transformed     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform(double f[]) throws MathException,        IllegalArgumentException {        return fft(f, false);    }    /**     * Transform the given real function, sampled on the given interval.     * <p>     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $     * </p>     *      * @param f the function to be sampled and transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = sample(f, min, max, n);        return fft(data, false);    }    /**     * Transform the given complex data set.     * <p>     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $     * </p>     *      * @param f the complex data array to be transformed     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform(Complex f[]) throws MathException,        IllegalArgumentException {        computeOmega(f.length);        return fft(f);    }    /**     * Transform the given real data set.     * <p>     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$     * </p>     *      * @param f the real data array to be transformed     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform2(double f[]) throws MathException,        IllegalArgumentException {        double scaling_coefficient = 1.0 / Math.sqrt(f.length);        return scaleArray(fft(f, false), scaling_coefficient);    }    /**     * Transform the given real function, sampled on the given interval.     * <p>     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$     * </p>     *      * @param f the function to be sampled and transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform2(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = sample(f, min, max, n);        double scaling_coefficient = 1.0 / Math.sqrt(n);        return scaleArray(fft(data, false), scaling_coefficient);    }    /**     * Transform the given complex data set.     * <p>     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$     * </p>     *      * @param f the complex data array to be transformed     * @return the complex transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] transform2(Complex f[]) throws MathException,        IllegalArgumentException {        computeOmega(f.length);        double scaling_coefficient = 1.0 / Math.sqrt(f.length);        return scaleArray(fft(f), scaling_coefficient);    }    /**     * Inversely transform the given real data set.     * <p>     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $     * </p>     *      * @param f the real data array to be inversely transformed     * @return the complex inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] inversetransform(double f[]) throws MathException,        IllegalArgumentException {        double scaling_coefficient = 1.0 / f.length;        return scaleArray(fft(f, true), scaling_coefficient);    }    /**     * Inversely transform the given real function, sampled on the given interval.     * <p>     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $     * </p>     *      * @param f the function to be sampled and inversely transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the complex inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] inversetransform(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = sample(f, min, max, n);        double scaling_coefficient = 1.0 / n;        return scaleArray(fft(data, true), scaling_coefficient);    }    /**     * Inversely transform the given complex data set.     * <p>     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $     * </p>     *      * @param f the complex data array to be inversely transformed     * @return the complex inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] inversetransform(Complex f[]) throws MathException,        IllegalArgumentException {        computeOmega(-f.length);    // pass negative argument        double scaling_coefficient = 1.0 / f.length;        return scaleArray(fft(f), scaling_coefficient);    }    /**     * Inversely transform the given real data set.     * <p>     * The formula is $x_k = (1/\sqrt{N}) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n$     * </p>     *      * @param f the real data array to be inversely transformed     * @return the complex inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] inversetransform2(double f[]) throws MathException,        IllegalArgumentException {        double scaling_coefficient = 1.0 / Math.sqrt(f.length);        return scaleArray(fft(f, true), scaling_coefficient);    }    /**     * Inversely transform the given real function, sampled on the given interval.     * <p>     * The formula is $x_k = (1/\sqrt{N}) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n$     * </p>     *      * @param f the function to be sampled and inversely transformed     * @param min the lower bound for the interval     * @param max the upper bound for the interval     * @param n the number of sample points     * @return the complex inversely transformed array     * @throws MathException if any math-related errors occur     * @throws IllegalArgumentException if any parameters are invalid     */    public Complex[] inversetransform2(        UnivariateRealFunction f, double min, double max, int n)        throws MathException, IllegalArgumentException {        double data[] = sample(f, min, max, n);        double scaling_coefficient = 1.0 / Math.sqrt(n);        return scaleArray(fft(data, true), scaling_coefficient);    }    /**     * Inversely transform the given complex data set.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -