📄 dormandprince54integrator.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.ode;/** * This class implements the 5(4) Dormand-Prince integrator for Ordinary * Differential Equations. * <p>This integrator is an embedded Runge-Kutta integrator * of order 5(4) used in local extrapolation mode (i.e. the solution * is computed using the high order formula) with stepsize control * (and automatic step initialization) and continuous output. This * method uses 7 functions evaluations per step. However, since this * is an <i>fsal</i>, the last evaluation of one step is the same as * the first evaluation of the next step and hence can be avoided. So * the cost is really 6 functions evaluations per step.</p> * * <p>This method has been published (whithout the continuous output * that was added by Shampine in 1986) in the following article : * <pre> * A family of embedded Runge-Kutta formulae * J. R. Dormand and P. J. Prince * Journal of Computational and Applied Mathematics * volume 6, no 1, 1980, pp. 19-26 * </pre></p> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class DormandPrince54Integrator extends EmbeddedRungeKuttaIntegrator { /** Integrator method name. */ private static final String methodName = "Dormand-Prince 5(4)"; /** Time steps Butcher array. */ private static final double[] staticC = { 1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0 }; /** Internal weights Butcher array. */ private static final double[][] staticA = { {1.0/5.0}, {3.0/40.0, 9.0/40.0}, {44.0/45.0, -56.0/15.0, 32.0/9.0}, {19372.0/6561.0, -25360.0/2187.0, 64448.0/6561.0, -212.0/729.0}, {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0}, {35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0} }; /** Propagation weights Butcher array. */ private static final double[] staticB = { 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0 }; /** Error array, element 1. */ private static final double e1 = 71.0 / 57600.0; // element 2 is zero, so it is neither stored nor used /** Error array, element 3. */ private static final double e3 = -71.0 / 16695.0; /** Error array, element 4. */ private static final double e4 = 71.0 / 1920.0; /** Error array, element 5. */ private static final double e5 = -17253.0 / 339200.0; /** Error array, element 6. */ private static final double e6 = 22.0 / 525.0; /** Error array, element 7. */ private static final double e7 = -1.0 / 40.0; /** Simple constructor. * Build a fifth order Dormand-Prince integrator with the given step bounds * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ public DormandPrince54Integrator(double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance) { super(true, staticC, staticA, staticB, new DormandPrince54StepInterpolator(), minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); } /** Simple constructor. * Build a fifth order Dormand-Prince integrator with the given step bounds * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ public DormandPrince54Integrator(double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance) { super(true, staticC, staticA, staticB, new DormandPrince54StepInterpolator(), minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); } /** Get the name of the method. * @return name of the method */ public String getName() { return methodName; } /** Get the order of the method. * @return order of the method */ public int getOrder() { return 5; } /** Compute the error ratio. * @param yDotK derivatives computed during the first stages * @param y0 estimate of the step at the start of the step * @param y1 estimate of the step at the end of the step * @param h current step * @return error ratio, greater than 1 if step should be rejected */ protected double estimateError(double[][] yDotK, double[] y0, double[] y1, double h) { double error = 0; for (int j = 0; j < y0.length; ++j) { double errSum = e1 * yDotK[0][j] + e3 * yDotK[2][j] + e4 * yDotK[3][j] + e5 * yDotK[4][j] + e6 * yDotK[5][j] + e7 * yDotK[6][j]; double yScale = Math.max(Math.abs(y0[j]), Math.abs(y1[j])); double tol = (vecAbsoluteTolerance == null) ? (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale); double ratio = h * errSum / tol; error += ratio * ratio; } return Math.sqrt(error / y0.length); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -