⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 continuousoutputmodel.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.ode;import java.util.ArrayList;import java.util.Iterator;import java.io.Serializable;/** * This class stores all information provided by an ODE integrator * during the integration process and build a continuous model of the * solution from this. * * <p>This class act as a step handler from the integrator point of * view. It is called iteratively during the integration process and * stores a copy of all steps information in a sorted collection for * later use. Once the integration process is over, the user can use * the {@link #setInterpolatedTime setInterpolatedTime} and {@link * #getInterpolatedState getInterpolatedState} to retrieve this * information at any time. It is important to wait for the * integration to be over before attempting to call {@link * #setInterpolatedTime setInterpolatedTime} because some internal * variables are set only once the last step has been handled.</p> * * <p>This is useful for example if the main loop of the user * application should remain independent from the integration process * or if one needs to mimic the behaviour of an analytical model * despite a numerical model is used (i.e. one needs the ability to * get the model value at any time or to navigate through the * data).</p> * * <p>If problem modelization is done with several separate * integration phases for contiguous intervals, the same * ContinuousOutputModel can be used as step handler for all * integration phases as long as they are performed in order and in * the same direction. As an example, one can extrapolate the * trajectory of a satellite with one model (i.e. one set of * differential equations) up to the beginning of a maneuver, use * another more complex model including thrusters modelization and * accurate attitude control during the maneuver, and revert to the * first model after the end of the maneuver. If the same continuous * output model handles the steps of all integration phases, the user * do not need to bother when the maneuver begins or ends, he has all * the data available in a transparent manner.</p> * * <p>An important feature of this class is that it implements the * <code>Serializable</code> interface. This means that the result of * an integration can be serialized and reused later (if stored into a * persistent medium like a filesystem or a database) or elsewhere (if * sent to another application). Only the result of the integration is * stored, there is no reference to the integrated problem by * itself.</p> * * <p>One should be aware that the amount of data stored in a * ContinuousOutputModel instance can be important if the state vector * is large, if the integration interval is long or if the steps are * small (which can result from small tolerance settings in {@link * AdaptiveStepsizeIntegrator adaptive step size integrators}).</p> * * @see StepHandler * @see StepInterpolator * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class ContinuousOutputModel  implements StepHandler, Serializable {  /** Simple constructor.   * Build an empty continuous output model.   */  public ContinuousOutputModel() {    steps = new ArrayList();    reset();  }  /** Append another model at the end of the instance.   * @param model model to add at the end of the instance   * @exception DerivativeException if some step interpolators from   * the appended model cannot be copied   * @exception IllegalArgumentException if the model to append is not   * compatible with the instance (dimension of the state vector,   * propagation direction, hole between the dates)   */  public void append(ContinuousOutputModel model)    throws DerivativeException {    if (model.steps.size() == 0) {      return;    }    if (steps.size() == 0) {      initialTime = model.initialTime;      forward     = model.forward;    } else {      if (getInterpolatedState().length != model.getInterpolatedState().length) {        throw new IllegalArgumentException("state vector dimension mismatch");      }      if (forward ^ model.forward) {        throw new IllegalArgumentException("propagation direction mismatch");      }      StepInterpolator lastInterpolator = (StepInterpolator) steps.get(index);      double current  = lastInterpolator.getCurrentTime();      double previous = lastInterpolator.getPreviousTime();      double step = current - previous;      double gap = model.getInitialTime() - current;      if (Math.abs(gap) > 1.0e-3 * Math.abs(step)) {        throw new IllegalArgumentException("hole between time ranges");      }    }    for (Iterator iter = model.steps.iterator(); iter.hasNext(); ) {      steps.add(((AbstractStepInterpolator) iter.next()).copy());    }    index = steps.size() - 1;    finalTime = ((StepInterpolator) steps.get(index)).getCurrentTime();  }  /** Determines whether this handler needs dense output.   * <p>The essence of this class is to provide dense output over all   * steps, hence it requires the internal steps to provide themselves   * dense output. The method therefore returns always true.</p>   * @return always true   */  public boolean requiresDenseOutput() {    return true;  }  /** Reset the step handler.   * Initialize the internal data as required before the first step is   * handled.   */  public void reset() {    initialTime = Double.NaN;    finalTime   = Double.NaN;    forward     = true;    index       = 0;    steps.clear();   }  /** Handle the last accepted step.   * A copy of the information provided by the last step is stored in   * the instance for later use.   * @param interpolator interpolator for the last accepted step.   * @param isLast true if the step is the last one   * @throws DerivativeException this exception is propagated to the   * caller if the underlying user function triggers one   */  public void handleStep(StepInterpolator interpolator, boolean isLast)    throws DerivativeException {    AbstractStepInterpolator ai = (AbstractStepInterpolator) interpolator;    if (steps.size() == 0) {      initialTime = interpolator.getPreviousTime();      forward     = interpolator.isForward();    }    steps.add(ai.copy());    if (isLast) {      finalTime = ai.getCurrentTime();      index     = steps.size() - 1;    }  }  /**   * Get the initial integration time.   * @return initial integration time   */  public double getInitialTime() {    return initialTime;  }      /**   * Get the final integration time.   * @return final integration time   */  public double getFinalTime() {    return finalTime;  }  /**   * Get the time of the interpolated point.   * If {@link #setInterpolatedTime} has not been called, it returns   * the final integration time.   * @return interpolation point time   */  public double getInterpolatedTime() {    return ((StepInterpolator) steps.get(index)).getInterpolatedTime();  }      /** Set the time of the interpolated point.   * <p>This method should <strong>not</strong> be called before the   * integration is over because some internal variables are set only   * once the last step has been handled.</p>   * <p>Setting the time outside of the integration interval is now   * allowed (it was not allowed up to version 5.9 of Mantissa), but   * should be used with care since the accuracy of the interpolator   * will probably be very poor far from this interval. This allowance   * has been added to simplify implementation of search algorithms   * near the interval endpoints.</p>   * @param time time of the interpolated point   */  public void setInterpolatedTime(double time) {    try {      // initialize the search with the complete steps table      int iMin = 0;      StepInterpolator sMin = (StepInterpolator) steps.get(iMin);      double tMin = 0.5 * (sMin.getPreviousTime() + sMin.getCurrentTime());      int iMax = steps.size() - 1;      StepInterpolator sMax = (StepInterpolator) steps.get(iMax);      double tMax = 0.5 * (sMax.getPreviousTime() + sMax.getCurrentTime());      // handle points outside of the integration interval      // or in the first and last step      if (locatePoint(time, sMin) <= 0) {        index = iMin;        sMin.setInterpolatedTime(time);        return;      }      if (locatePoint(time, sMax) >= 0) {        index = iMax;        sMax.setInterpolatedTime(time);        return;      }      // reduction of the table slice size      while (iMax - iMin > 5) {        // use the last estimated index as the splitting index        StepInterpolator si = (StepInterpolator) steps.get(index);        int location = locatePoint(time, si);        if (location < 0) {          iMax = index;          tMax = 0.5 * (si.getPreviousTime() + si.getCurrentTime());        } else if (location > 0) {          iMin = index;          tMin = 0.5 * (si.getPreviousTime() + si.getCurrentTime());        } else {          // we have found the target step, no need to continue searching          si.setInterpolatedTime(time);          return;        }        // compute a new estimate of the index in the reduced table slice        int iMed = (iMin + iMax) / 2;        StepInterpolator sMed = (StepInterpolator) steps.get(iMed);        double tMed = 0.5 * (sMed.getPreviousTime() + sMed.getCurrentTime());        if ((Math.abs(tMed - tMin) < 1e-6) || (Math.abs(tMax - tMed) < 1e-6)) {          // too close to the bounds, we estimate using a simple dichotomy          index = iMed;        } else {          // estimate the index using a reverse quadratic polynom          // (reverse means we have i = P(t), thus allowing to simply          // compute index = P(time) rather than solving a quadratic equation)          double d12 = tMax - tMed;          double d23 = tMed - tMin;          double d13 = tMax - tMin;          double dt1 = time - tMax;          double dt2 = time - tMed;          double dt3 = time - tMin;          double iLagrange = ((dt2 * dt3 * d23) * iMax -                              (dt1 * dt3 * d13) * iMed +                              (dt1 * dt2 * d12) * iMin) /                             (d12 * d23 * d13);          index = (int) Math.rint(iLagrange);        }        // force the next size reduction to be at least one tenth        int low  = Math.max(iMin + 1, (9 * iMin + iMax) / 10);        int high = Math.min(iMax - 1, (iMin + 9 * iMax) / 10);        if (index < low) {          index = low;        } else if (index > high) {          index = high;        }      }      // now the table slice is very small, we perform an iterative search      index = iMin;      while ((index <= iMax) &&             (locatePoint(time, (StepInterpolator) steps.get(index)) > 0)) {        ++index;      }      StepInterpolator si = (StepInterpolator) steps.get(index);      si.setInterpolatedTime(time);    } catch (DerivativeException de) {      throw new RuntimeException("unexpected DerivativeException caught: " +                                 de.getMessage());    }  }  /**   * Get the state vector of the interpolated point.   * @return state vector at time {@link #getInterpolatedTime}   */  public double[] getInterpolatedState() {    return ((StepInterpolator) steps.get(index)).getInterpolatedState();  }  /** Compare a step interval and a double.    * @param time point to locate   * @param interval step interval   * @return -1 if the double is before the interval, 0 if it is in   * the interval, and +1 if it is after the interval, according to   * the interval direction   */  private int locatePoint(double time, StepInterpolator interval) {    if (forward) {      if (time < interval.getPreviousTime()) {        return -1;      } else if (time > interval.getCurrentTime()) {        return +1;      } else {        return 0;      }    }    if (time > interval.getPreviousTime()) {      return -1;    } else if (time < interval.getCurrentTime()) {      return +1;    } else {      return 0;    }  }  /** Initial integration time. */  private double initialTime;  /** Final integration time. */  private double finalTime;  /** Integration direction indicator. */  private boolean forward;  /** Current interpolator index. */  private int index;  /** Steps table. */  private ArrayList steps;  /** Serializable version identifier */  private static final long serialVersionUID = 2259286184268533249L;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -