📄 graggbulirschstoerstepinterpolator.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.ode;import java.io.ObjectInput;import java.io.ObjectOutput;import java.io.IOException;/** * This class implements an interpolator for the Gragg-Bulirsch-Stoer * integrator. * * <p>This interpolator compute dense output inside the last step * produced by a Gragg-Bulirsch-Stoer integrator.</p> * * <p> * This implementation is basically a reimplementation in Java of the * <a * href="http://www.unige.ch/math/folks/hairer/prog/nonstiff/odex.f">odex</a> * fortran code by E. Hairer and G. Wanner. The redistribution policy * for this code is available <a * href="http://www.unige.ch/~hairer/prog/licence.txt">here</a>, for * convenience, it is reproduced below.</p> * </p> * * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0"> * <tr><td>Copyright (c) 2004, Ernst Hairer</td></tr> * * <tr><td>Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * <ul> * <li>Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer.</li> * <li>Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution.</li> * </ul></td></tr> * * <tr><td><strong>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.</strong></td></tr> * </table> * * @see GraggBulirschStoerIntegrator * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @author E. Hairer and G. Wanner (fortran version) * @since 1.2 */class GraggBulirschStoerStepInterpolator extends AbstractStepInterpolator { /** Slope at the beginning of the step. */ private double[] y0Dot; /** State at the end of the step. */ private double[] y1; /** Slope at the end of the step. */ private double[] y1Dot; /** Derivatives at the middle of the step. * element 0 is state at midpoint, element 1 is first derivative ... */ private double[][] yMidDots; /** Interpolation polynoms. */ private double[][] polynoms; /** Error coefficients for the interpolation. */ private double[] errfac; /** Degree of the interpolation polynoms. */ private int currentDegree; /** Reallocate the internal tables. * Reallocate the internal tables in order to be able to handle * interpolation polynoms up to the given degree * @param maxDegree maximal degree to handle */ private void resetTables(int maxDegree) { if (maxDegree < 0) { polynoms = null; errfac = null; currentDegree = -1; } else { double[][] newPols = new double[maxDegree + 1][]; if (polynoms != null) { System.arraycopy(polynoms, 0, newPols, 0, polynoms.length); for (int i = polynoms.length; i < newPols.length; ++i) { newPols[i] = new double[currentState.length]; } } else { for (int i = 0; i < newPols.length; ++i) { newPols[i] = new double[currentState.length]; } } polynoms = newPols; // initialize the error factors array for interpolation if (maxDegree <= 4) { errfac = null; } else { errfac = new double[maxDegree - 4]; for (int i = 0; i < errfac.length; ++i) { int ip5 = i + 5; errfac[i] = 1.0 / (ip5 * ip5); double e = 0.5 * Math.sqrt (((double) (i + 1)) / ip5); for (int j = 0; j <= i; ++j) { errfac[i] *= e / (j + 1); } } } currentDegree = 0; } } /** Simple constructor. * This constructor should not be used directly, it is only intended * for the serialization process. */ public GraggBulirschStoerStepInterpolator() { y0Dot = null; y1 = null; y1Dot = null; yMidDots = null; resetTables(-1); } /** Simple constructor. * @param y reference to the integrator array holding the current state * @param y0Dot reference to the integrator array holding the slope * at the beginning of the step * @param y1 reference to the integrator array holding the state at * the end of the step * @param y1Dot reference to the integrator array holding the slope * at theend of the step * @param yMidDots reference to the integrator array holding the * derivatives at the middle point of the step * @param forward integration direction indicator */ public GraggBulirschStoerStepInterpolator(double[] y, double[] y0Dot, double[] y1, double[] y1Dot, double[][] yMidDots, boolean forward) { super(y, forward); this.y0Dot = y0Dot; this.y1 = y1; this.y1Dot = y1Dot; this.yMidDots = yMidDots; resetTables(yMidDots.length + 4); } /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ public GraggBulirschStoerStepInterpolator (GraggBulirschStoerStepInterpolator interpolator) { super(interpolator); int dimension = currentState.length; // the interpolator has been finalized, // the following arrays are not needed anymore y0Dot = null; y1 = null; y1Dot = null; yMidDots = null; // copy the interpolation polynoms (up to the current degree only) if (interpolator.polynoms == null) { polynoms = null; currentDegree = -1; } else { resetTables(interpolator.currentDegree); for (int i = 0; i < polynoms.length; ++i) { polynoms[i] = new double[dimension]; System.arraycopy(interpolator.polynoms[i], 0, polynoms[i], 0, dimension); } currentDegree = interpolator.currentDegree; } } /** Really copy the finalized instance. * @return a copy of the finalized instance */ protected StepInterpolator doCopy() { return new GraggBulirschStoerStepInterpolator(this); } /** Compute the interpolation coefficients for dense output. * @param mu degree of the interpolation polynom * @param h current step */ public void computeCoefficients(int mu, double h) { if ((polynoms == null) || (polynoms.length <= (mu + 4))) { resetTables(mu + 4); } currentDegree = mu + 4; for (int i = 0; i < currentState.length; ++i) { double yp0 = h * y0Dot[i]; double yp1 = h * y1Dot[i]; double ydiff = y1[i] - currentState[i]; double aspl = ydiff - yp1; double bspl = yp0 - ydiff; polynoms[0][i] = currentState[i]; polynoms[1][i] = ydiff; polynoms[2][i] = aspl; polynoms[3][i] = bspl; if (mu < 0) { return; } // compute the remaining coefficients double ph0 = 0.5 * (currentState[i] + y1[i]) + 0.125 * (aspl + bspl); polynoms[4][i] = 16 * (yMidDots[0][i] - ph0); if (mu > 0) { double ph1 = ydiff + 0.25 * (aspl - bspl); polynoms[5][i] = 16 * (yMidDots[1][i] - ph1); if (mu > 1) { double ph2 = yp1 - yp0; polynoms[6][i] = 16 * (yMidDots[2][i] - ph2 + polynoms[4][i]); if (mu > 2) { double ph3 = 6 * (bspl - aspl); polynoms[7][i] = 16 * (yMidDots[3][i] - ph3 + 3 * polynoms[5][i]); for (int j = 4; j <= mu; ++j) { double fac1 = 0.5 * j * (j - 1); double fac2 = 2 * fac1 * (j - 2) * (j - 3); polynoms[j+4][i] = 16 * (yMidDots[j][i] + fac1 * polynoms[j+2][i] - fac2 * polynoms[j][i]); } } } } } } /** Estimate interpolation error. * @param scale scaling array * @return estimate of the interpolation error */ public double estimateError(double[] scale) { double error = 0; if (currentDegree >= 5) { for (int i = 0; i < currentState.length; ++i) { double e = polynoms[currentDegree][i] / scale[i]; error += e * e; } error = Math.sqrt(error / currentState.length) * errfac[currentDegree-5]; } return error; } /** Compute the state at the interpolated time. * This is the main processing method that should be implemented by * the derived classes to perform the interpolation. * @param theta normalized interpolation abscissa within the step * (theta is zero at the previous time step and one at the current time step) * @param oneMinusThetaH time gap between the interpolated time and * the current time * @throws DerivativeException this exception is propagated to the caller if the * underlying user function triggers one */ protected void computeInterpolatedState(double theta, double oneMinusThetaH) throws DerivativeException { int dimension = currentState.length; double oneMinusTheta = 1.0 - theta; double theta05 = theta - 0.5; double t4 = theta * oneMinusTheta; t4 = t4 * t4; for (int i = 0; i < dimension; ++i) { interpolatedState[i] = polynoms[0][i] + theta * (polynoms[1][i] + oneMinusTheta * (polynoms[2][i] * theta + polynoms[3][i] * oneMinusTheta)); if (currentDegree > 3) { double c = polynoms[currentDegree][i]; for (int j = currentDegree - 1; j > 3; --j) { c = polynoms[j][i] + c * theta05 / (j - 3); } interpolatedState[i] += t4 * c; } } } /** Save the state of the instance. * @param out stream where to save the state * @exception IOException in case of write error */ public void writeExternal(ObjectOutput out) throws IOException { int dimension = currentState.length; // save the state of the base class writeBaseExternal(out); // save the local attributes (but not the temporary vectors) out.writeInt(currentDegree); for (int k = 0; k <= currentDegree; ++k) { for (int l = 0; l < dimension; ++l) { out.writeDouble(polynoms[k][l]); } } } /** Read the state of the instance. * @param in stream where to read the state from * @exception IOException in case of read error */ public void readExternal(ObjectInput in) throws IOException { // read the base class double t = readBaseExternal(in); int dimension = currentState.length; // read the local attributes int degree = in.readInt(); resetTables(degree); currentDegree = degree; for (int k = 0; k <= currentDegree; ++k) { for (int l = 0; l < dimension; ++l) { polynoms[k][l] = in.readDouble(); } } try { // we can now set the interpolated time and state setInterpolatedTime(t); } catch (DerivativeException e) { throw new IOException(e.getMessage()); } } /** Serializable version identifier */ private static final long serialVersionUID = 7320613236731409847L;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -