⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statutils.java

📁 Apache的common math数学软件包
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    public static double variance(final double[] values) {        return variance.evaluate(values);    }    /**     * Returns the variance of the entries in the specified portion of     * the input array, or <code>Double.NaN</code> if the designated subarray     * is empty.     * <p>     * See {@link org.apache.commons.math.stat.descriptive.moment.Variance} for     * details on the computing algorithm.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null or the     * array index parameters are not valid.</p>     *      * @param values the input array     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the variance of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public static double variance(final double[] values, final int begin,            final int length) {        return variance.evaluate(values, begin, length);    }        /**     * Returns the variance of the entries in the specified portion of     * the input array, using the precomputed mean value.  Returns      * <code>Double.NaN</code> if the designated subarray is empty.     * <p>     * See {@link org.apache.commons.math.stat.descriptive.moment.Variance} for     * details on the computing algorithm.</p>     * <p>     * The formula used assumes that the supplied mean value is the arithmetic     * mean of the sample data, not a known population parameter.  This method     * is supplied only to save computation when the mean has already been     * computed.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null or the     * array index parameters are not valid.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the variance of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public static double variance(final double[] values, final double mean,             final int begin, final int length) {        return variance.evaluate(values, mean, begin, length);        }        /**     * Returns the variance of the entries in the input array, using the     * precomputed mean value.  Returns <code>Double.NaN</code> if the array     * is empty.       * <p>     * See {@link org.apache.commons.math.stat.descriptive.moment.Variance} for     * details on the computing algorithm.</p>       * <p>     * The formula used assumes that the supplied mean value is the arithmetic     * mean of the sample data, not a known population parameter.  This method     * is supplied only to save computation when the mean has already been     * computed.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @return the variance of the values or Double.NaN if the array is empty     * @throws IllegalArgumentException if the array is null     */    public static double variance(final double[] values, final double mean) {        return variance.evaluate(values, mean);        }    /**     * Returns the maximum of the entries in the input array, or      * <code>Double.NaN</code> if the array is empty.     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * <ul>     * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>      * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>     * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,      * the result is <code>Double.POSITIVE_INFINITY.</code></li>     * </ul></p>     *      * @param values the input array     * @return the maximum of the values or Double.NaN if the array is empty     * @throws IllegalArgumentException if the array is null     */    public static double max(final double[] values) {        return max.evaluate(values);    }    /**     * Returns the maximum of the entries in the specified portion of     * the input array, or <code>Double.NaN</code> if the designated subarray     * is empty.     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null or     * the array index parameters are not valid.</p>     * <p>     * <ul>     * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>      * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>     * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,      * the result is <code>Double.POSITIVE_INFINITY.</code></li>     * </ul></p>     *      * @param values the input array     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the maximum of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     * parameters are not valid     */    public static double max(final double[] values, final int begin,            final int length) {        return max.evaluate(values, begin, length);    }     /**     * Returns the minimum of the entries in the input array, or      * <code>Double.NaN</code> if the array is empty.     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * <ul>     * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>      * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>     * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,      * the result is <code>Double.NEGATIVE_INFINITY.</code></li>     * </ul> </p>     *      * @param values the input array     * @return the minimum of the values or Double.NaN if the array is empty     * @throws IllegalArgumentException if the array is null     */    public static double min(final double[] values) {        return min.evaluate(values);    }     /**     * Returns the minimum of the entries in the specified portion of     * the input array, or <code>Double.NaN</code> if the designated subarray     * is empty.     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null or     * the array index parameters are not valid.</p>     * <p>     * <ul>     * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>      * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>     * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,      * the result is <code>Double.NEGATIVE_INFINITY.</code></li>     * </ul></p>     *      * @param values the input array     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the minimum of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     * parameters are not valid     */    public static double min(final double[] values, final int begin,            final int length) {        return min.evaluate(values, begin, length);    }        /**     * Returns an estimate of the <code>p</code>th percentile of the values     * in the <code>values</code> array.     * <p>     * <ul>     * <li>Returns <code>Double.NaN</code> if <code>values</code> has length      * <code>0</code></li></p>     * <li>Returns (for any value of <code>p</code>) <code>values[0]</code>     *  if <code>values</code> has length <code>1</code></li>     * <li>Throws <code>IllegalArgumentException</code> if <code>values</code>     * is null  or p is not a valid quantile value (p must be greater than 0     * and less than or equal to 100)</li>     * </ul></p>     * <p>     * See {@link org.apache.commons.math.stat.descriptive.rank.Percentile} for     * a description of the percentile estimation algorithm used.</p>     *      * @param values input array of values     * @param p the percentile value to compute     * @return the percentile value or Double.NaN if the array is empty     * @throws IllegalArgumentException if <code>values</code> is null      * or p is invalid     */    public static double percentile(final double[] values, final double p) {            return percentile.evaluate(values,p);    }     /**     * Returns an estimate of the <code>p</code>th percentile of the values     * in the <code>values</code> array, starting with the element in (0-based)     * position <code>begin</code> in the array and including <code>length</code>     * values.     * <p>     * <ul>     * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li>     * <li>Returns (for any value of <code>p</code>) <code>values[begin]</code>     *  if <code>length = 1 </code></li>     * <li>Throws <code>IllegalArgumentException</code> if <code>values</code>     *  is null , <code>begin</code> or <code>length</code> is invalid, or      * <code>p</code> is not a valid quantile value (p must be greater than 0     * and less than or equal to 100)</li>     * </ul></p>     * <p>      * See {@link org.apache.commons.math.stat.descriptive.rank.Percentile} for      * a description of the percentile estimation algorithm used.</p>     *      * @param values array of input values     * @param p  the percentile to compute     * @param begin  the first (0-based) element to include in the computation     * @param length  the number of array elements to include     * @return  the percentile value     * @throws IllegalArgumentException if the parameters are not valid or the     * input array is null     */    public static double percentile(final double[] values, final int begin,             final int length, final double p) {        return percentile.evaluate(values, begin, length, p);    }           /**     * Returns the sum of the (signed) differences between corresponding elements of the     * input arrays -- i.e., sum(sample1[i] - sample2[i]).     *      * @param sample1  the first array     * @param sample2  the second array     * @return sum of paired differences     * @throws IllegalArgumentException if the arrays do not have the same     * (positive) length     */    public static double sumDifference(final double[] sample1, final double[] sample2)        throws IllegalArgumentException {        int n = sample1.length;        if (n  != sample2.length || n < 1) {            throw new IllegalArgumentException                 ("Input arrays must have the same (positive) length.");        }        double result = 0;        for (int i = 0; i < n; i++) {            result += sample1[i] - sample2[i];        }        return result;    }        /**     * Returns the mean of the (signed) differences between corresponding elements of the     * input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length.     *      * @param sample1  the first array     * @param sample2  the second array     * @return mean of paired differences     * @throws IllegalArgumentException if the arrays do not have the same     * (positive) length     */    public static double meanDifference(final double[] sample1, final double[] sample2)    throws IllegalArgumentException {        return sumDifference(sample1, sample2) / (double) sample1.length;    }        /**     * Returns the variance of the (signed) differences between corresponding elements of the     * input arrays -- i.e., var(sample1[i] - sample2[i]).     *      * @param sample1  the first array     * @param sample2  the second array     * @param meanDifference   the mean difference between corresponding entries      * @see #meanDifference(double[],double[])     * @return variance of paired differences     * @throws IllegalArgumentException if the arrays do not have the same     * length or their common length is less than 2.     */    public static double varianceDifference(final double[] sample1, final double[] sample2,             double meanDifference)  throws IllegalArgumentException {        double sum1 = 0d;        double sum2 = 0d;        double diff = 0d;        int n = sample1.length;        if (n < 2 || n != sample2.length) {            throw new IllegalArgumentException("Input array lengths must be equal and at least 2.");        }        for (int i = 0; i < n; i++) {            diff = sample1[i] - sample2[i];            sum1 += (diff - meanDifference) *(diff - meanDifference);            sum2 += diff - meanDifference;        }        return (sum1 - (sum2 * sum2 / (double) n)) / (double) (n - 1);    }          }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -