⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 standarddeviation.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;/** * Computes the sample standard deviation.  The standard deviation * is the positive square root of the variance.  This implementation wraps a * {@link Variance} instance.  The <code>isBiasCorrected</code> property of the * wrapped Variance instance is exposed, so that this class can be used to * compute both the "sample standard deviation" (the square root of the  * bias-corrected "sample variance") or the "population standard deviation" * (the square root of the non-bias-corrected "population variance"). See  * {@link Variance} for more information.   * <p> * <strong>Note that this implementation is not synchronized.</strong> If  * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the <code>increment()</code> or  * <code>clear()</code> method, it must be synchronized externally.</p> *  * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class StandardDeviation extends AbstractStorelessUnivariateStatistic    implements Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 5728716329662425188L;          /** Wrapped Variance instance */    private Variance variance = null;    /**     * Constructs a StandardDeviation.  Sets the underlying {@link Variance}     * instance's <code>isBiasCorrected</code> property to true.     */    public StandardDeviation() {        variance = new Variance();    }    /**     * Constructs a StandardDeviation from an external second moment.     *      * @param m2 the external moment     */    public StandardDeviation(final SecondMoment m2) {        variance = new Variance(m2);    }        /**     * Contructs a StandardDeviation with the specified value for the     * <code>isBiasCorrected</code> property.  If this property is set to      * <code>true</code>, the {@link Variance} used in computing results will     * use the bias-corrected, or "sample" formula.  See {@link Variance} for     * details.     *      * @param isBiasCorrected  whether or not the variance computation will use     * the bias-corrected formula     */    public StandardDeviation(boolean isBiasCorrected) {        variance = new Variance(isBiasCorrected);    }        /**     * Contructs a StandardDeviation with the specified value for the     * <code>isBiasCorrected</code> property and the supplied external moment.     * If <code>isBiasCorrected</code> is set to <code>true</code>, the     * {@link Variance} used in computing results will use the bias-corrected,     * or "sample" formula.  See {@link Variance} for details.     *      * @param isBiasCorrected  whether or not the variance computation will use     * the bias-corrected formula      * @param m2 the external moment     */    public StandardDeviation(boolean isBiasCorrected, SecondMoment m2) {        variance = new Variance(isBiasCorrected, m2);    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double)     */    public void increment(final double d) {        variance.increment(d);    }        /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN()     */    public long getN() {        return variance.getN();    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getResult()     */    public double getResult() {        return Math.sqrt(variance.getResult());    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear()     */    public void clear() {        variance.clear();    }    /**     * Returns the Standard Deviation of the entries in the input array, or      * <code>Double.NaN</code> if the array is empty.     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @return the standard deviation of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null     */      public double evaluate(final double[] values)  {        return Math.sqrt(variance.evaluate(values));    }        /**     * Returns the Standard Deviation of the entries in the specified portion of     * the input array, or <code>Double.NaN</code> if the designated subarray     * is empty.     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample. </p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the standard deviation of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public double evaluate(final double[] values, final int begin, final int length)  {       return Math.sqrt(variance.evaluate(values, begin, length));    }        /**     * Returns the Standard Deviation of the entries in the specified portion of     * the input array, using the precomputed mean value.  Returns     * <code>Double.NaN</code> if the designated subarray is empty.     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * The formula used assumes that the supplied mean value is the arithmetic     * mean of the sample data, not a known population parameter.  This method     * is supplied only to save computation when the mean has already been     * computed.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the standard deviation of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public double evaluate(final double[] values, final double mean,            final int begin, final int length)  {        return Math.sqrt(variance.evaluate(values, mean, begin, length));    }        /**     * Returns the Standard Deviation of the entries in the input array, using     * the precomputed mean value.  Returns     * <code>Double.NaN</code> if the designated subarray is empty.     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * The formula used assumes that the supplied mean value is the arithmetic     * mean of the sample data, not a known population parameter.  This method     * is supplied only to save computation when the mean has already been     * computed.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @return the standard deviation of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null     */    public double evaluate(final double[] values, final double mean)  {        return Math.sqrt(variance.evaluate(values, mean));    }        /**     * @return Returns the isBiasCorrected.     */    public boolean isBiasCorrected() {        return variance.isBiasCorrected();    }    /**     * @param isBiasCorrected The isBiasCorrected to set.     */    public void setBiasCorrected(boolean isBiasCorrected) {        variance.setBiasCorrected(isBiasCorrected);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -