⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vectorialcovariance.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import java.util.Arrays;import org.apache.commons.math.DimensionMismatchException;import org.apache.commons.math.linear.RealMatrix;import org.apache.commons.math.linear.RealMatrixImpl;/** * Returns the covariance matrix of the available vectors. * @since 1.2 * @version $Revision: 619928 $ $Date: 2008-02-08 09:19:17 -0700 (Fri, 08 Feb 2008) $ */public class VectorialCovariance implements Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 4118372414238930270L;    /** Sums for each component. */    private double[] sums;    /** Sums of products for each component. */    private double[] productsSums;    /** Indicator for bias correction. */    private boolean isBiasCorrected;    /** Number of vectors in the sample. */    private long n;    /** Constructs a VectorialMean.     * @param dimension vectors dimension     * @param isBiasCorrected if true, computed the unbiased sample covariance,     * otherwise computes the biased population covariance     */    public VectorialCovariance(int dimension, boolean isBiasCorrected) {        sums         = new double[dimension];        productsSums = new double[dimension * (dimension + 1) / 2];        n            = 0;        this.isBiasCorrected = isBiasCorrected;    }    /**     * Add a new vector to the sample.     * @param v vector to add     * @exception DimensionMismatchException if the vector does not have the right dimension     */    public void increment(double[] v) throws DimensionMismatchException {        if (v.length != sums.length) {            throw new DimensionMismatchException(v.length, sums.length);        }        int k = 0;        for (int i = 0; i < v.length; ++i) {            sums[i] += v[i];            for (int j = 0; j <= i; ++j) {                productsSums[k++] += v[i] * v[j];            }        }        n++;    }    /**     * Get the covariance matrix.     * @return covariance matrix     */    public RealMatrix getResult() {        int dimension = sums.length;        RealMatrixImpl result = new RealMatrixImpl(dimension, dimension);        if (n > 1) {            double[][] resultData = result.getDataRef();            double c = 1.0 / (n * (isBiasCorrected ? (n - 1) : n));            int k = 0;            for (int i = 0; i < dimension; ++i) {                for (int j = 0; j <= i; ++j) {                    double e = c * (n * productsSums[k++] - sums[i] * sums[j]);                    resultData[i][j] = e;                    resultData[j][i] = e;                }            }        }        return result;    }    /**     * Get the number of vectors in the sample.     * @return number of vectors in the sample     */    public long getN() {        return n;    }    /**     * Clears the internal state of the Statistic     */    public void clear() {        n = 0;        Arrays.fill(sums, 0.0);        Arrays.fill(productsSums, 0.0);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -