📄 vectorialcovariance.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import java.util.Arrays;import org.apache.commons.math.DimensionMismatchException;import org.apache.commons.math.linear.RealMatrix;import org.apache.commons.math.linear.RealMatrixImpl;/** * Returns the covariance matrix of the available vectors. * @since 1.2 * @version $Revision: 619928 $ $Date: 2008-02-08 09:19:17 -0700 (Fri, 08 Feb 2008) $ */public class VectorialCovariance implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 4118372414238930270L; /** Sums for each component. */ private double[] sums; /** Sums of products for each component. */ private double[] productsSums; /** Indicator for bias correction. */ private boolean isBiasCorrected; /** Number of vectors in the sample. */ private long n; /** Constructs a VectorialMean. * @param dimension vectors dimension * @param isBiasCorrected if true, computed the unbiased sample covariance, * otherwise computes the biased population covariance */ public VectorialCovariance(int dimension, boolean isBiasCorrected) { sums = new double[dimension]; productsSums = new double[dimension * (dimension + 1) / 2]; n = 0; this.isBiasCorrected = isBiasCorrected; } /** * Add a new vector to the sample. * @param v vector to add * @exception DimensionMismatchException if the vector does not have the right dimension */ public void increment(double[] v) throws DimensionMismatchException { if (v.length != sums.length) { throw new DimensionMismatchException(v.length, sums.length); } int k = 0; for (int i = 0; i < v.length; ++i) { sums[i] += v[i]; for (int j = 0; j <= i; ++j) { productsSums[k++] += v[i] * v[j]; } } n++; } /** * Get the covariance matrix. * @return covariance matrix */ public RealMatrix getResult() { int dimension = sums.length; RealMatrixImpl result = new RealMatrixImpl(dimension, dimension); if (n > 1) { double[][] resultData = result.getDataRef(); double c = 1.0 / (n * (isBiasCorrected ? (n - 1) : n)); int k = 0; for (int i = 0; i < dimension; ++i) { for (int j = 0; j <= i; ++j) { double e = c * (n * productsSums[k++] - sums[i] * sums[j]); resultData[i][j] = e; resultData[j][i] = e; } } } return result; } /** * Get the number of vectors in the sample. * @return number of vectors in the sample */ public long getN() { return n; } /** * Clears the internal state of the Statistic */ public void clear() { n = 0; Arrays.fill(sums, 0.0); Arrays.fill(productsSums, 0.0); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -