⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 skewness.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;/** * Computes the skewness of the available values. * <p> * We use the following (unbiased) formula to define skewness:</p> * <p> * skewness = [n / (n -1) (n - 2)] sum[(x_i - mean)^3] / std^3 </p> * <p> * where n is the number of values, mean is the {@link Mean} and std is the  * {@link StandardDeviation} </p> * <p> * <strong>Note that this implementation is not synchronized.</strong> If  * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the <code>increment()</code> or  * <code>clear()</code> method, it must be synchronized externally. </p> *  * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class Skewness extends AbstractStorelessUnivariateStatistic implements Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 7101857578996691352L;            /** Third moment on which this statistic is based */    protected ThirdMoment moment = null;     /**      * Determines whether or not this statistic can be incremented or cleared.     * <p>     * Statistics based on (constructed from) external moments cannot     * be incremented or cleared.</p>    */    protected boolean incMoment;    /**     * Constructs a Skewness     */    public Skewness() {        incMoment = true;        moment = new ThirdMoment();    }    /**     * Constructs a Skewness with an external moment     * @param m3 external moment     */    public Skewness(final ThirdMoment m3) {        incMoment = false;        this.moment = m3;    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double)     */    public void increment(final double d) {        if (incMoment) {            moment.increment(d);        }    }    /**     * Returns the value of the statistic based on the values that have been added.     * <p>     * See {@link Skewness} for the definition used in the computation.</p>     *      * @return the skewness of the available values.     */    public double getResult() {                if (moment.n < 3) {            return Double.NaN;        }        double variance = moment.m2 / (double) (moment.n - 1);        if (variance < 10E-20) {            return 0.0d;        } else {            double n0 = (double) moment.getN();            return  (n0 * moment.m3) /            ((n0 - 1) * (n0 -2) * Math.sqrt(variance) * variance);        }    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN()     */    public long getN() {        return moment.getN();    }        /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear()     */    public void clear() {        if (incMoment) {            moment.clear();        }    }    /**     * Returns the Skewness of the entries in the specifed portion of the     * input array.     * <p>     * See {@link Skewness} for the definition used in the computation.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     *      * @param values the input array     * @param begin the index of the first array element to include     * @param length the number of elements to include     * @return the skewness of the values or Double.NaN if length is less than     * 3     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public double evaluate(final double[] values,final int begin,             final int length) {        // Initialize the skewness        double skew = Double.NaN;        if (test(values, begin, length) && length > 2 ){            Mean mean = new Mean();            // Get the mean and the standard deviation            double m = mean.evaluate(values, begin, length);                        // Calc the std, this is implemented here instead            // of using the standardDeviation method eliminate            // a duplicate pass to get the mean            double accum = 0.0;            double accum2 = 0.0;            for (int i = begin; i < begin + length; i++) {                accum += Math.pow((values[i] - m), 2.0);                accum2 += (values[i] - m);            }            double stdDev = Math.sqrt((accum - (Math.pow(accum2, 2) / ((double) length))) /                    (double) (length - 1));                        double accum3 = 0.0;            for (int i = begin; i < begin + length; i++) {                accum3 += Math.pow(values[i] - m, 3.0d);            }            accum3 /= Math.pow(stdDev, 3.0d);                        // Get N            double n0 = length;                        // Calculate skewness            skew = (n0 / ((n0 - 1) * (n0 - 2))) * accum3;        }        return skew;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -