📄 skewness.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;/** * Computes the skewness of the available values. * <p> * We use the following (unbiased) formula to define skewness:</p> * <p> * skewness = [n / (n -1) (n - 2)] sum[(x_i - mean)^3] / std^3 </p> * <p> * where n is the number of values, mean is the {@link Mean} and std is the * {@link StandardDeviation} </p> * <p> * <strong>Note that this implementation is not synchronized.</strong> If * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the <code>increment()</code> or * <code>clear()</code> method, it must be synchronized externally. </p> * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class Skewness extends AbstractStorelessUnivariateStatistic implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 7101857578996691352L; /** Third moment on which this statistic is based */ protected ThirdMoment moment = null; /** * Determines whether or not this statistic can be incremented or cleared. * <p> * Statistics based on (constructed from) external moments cannot * be incremented or cleared.</p> */ protected boolean incMoment; /** * Constructs a Skewness */ public Skewness() { incMoment = true; moment = new ThirdMoment(); } /** * Constructs a Skewness with an external moment * @param m3 external moment */ public Skewness(final ThirdMoment m3) { incMoment = false; this.moment = m3; } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double) */ public void increment(final double d) { if (incMoment) { moment.increment(d); } } /** * Returns the value of the statistic based on the values that have been added. * <p> * See {@link Skewness} for the definition used in the computation.</p> * * @return the skewness of the available values. */ public double getResult() { if (moment.n < 3) { return Double.NaN; } double variance = moment.m2 / (double) (moment.n - 1); if (variance < 10E-20) { return 0.0d; } else { double n0 = (double) moment.getN(); return (n0 * moment.m3) / ((n0 - 1) * (n0 -2) * Math.sqrt(variance) * variance); } } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN() */ public long getN() { return moment.getN(); } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear() */ public void clear() { if (incMoment) { moment.clear(); } } /** * Returns the Skewness of the entries in the specifed portion of the * input array. * <p> * See {@link Skewness} for the definition used in the computation.</p> * <p> * Throws <code>IllegalArgumentException</code> if the array is null.</p> * * @param values the input array * @param begin the index of the first array element to include * @param length the number of elements to include * @return the skewness of the values or Double.NaN if length is less than * 3 * @throws IllegalArgumentException if the array is null or the array index * parameters are not valid */ public double evaluate(final double[] values,final int begin, final int length) { // Initialize the skewness double skew = Double.NaN; if (test(values, begin, length) && length > 2 ){ Mean mean = new Mean(); // Get the mean and the standard deviation double m = mean.evaluate(values, begin, length); // Calc the std, this is implemented here instead // of using the standardDeviation method eliminate // a duplicate pass to get the mean double accum = 0.0; double accum2 = 0.0; for (int i = begin; i < begin + length; i++) { accum += Math.pow((values[i] - m), 2.0); accum2 += (values[i] - m); } double stdDev = Math.sqrt((accum - (Math.pow(accum2, 2) / ((double) length))) / (double) (length - 1)); double accum3 = 0.0; for (int i = begin; i < begin + length; i++) { accum3 += Math.pow(values[i] - m, 3.0d); } accum3 /= Math.pow(stdDev, 3.0d); // Get N double n0 = length; // Calculate skewness skew = (n0 / ((n0 - 1) * (n0 - 2))) * accum3; } return skew; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -