⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 variance.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;/** * Computes the variance of the available values.  By default, the unbiased * "sample variance" definitional formula is used:  * <p> * variance = sum((x_i - mean)^2) / (n - 1) </p> * <p> * where mean is the {@link Mean} and <code>n</code> is the number * of sample observations.</p> * <p> * The definitional formula does not have good numerical properties, so * this implementation does not compute the statistic using the definitional * formula. <ul> * <li> The <code>getResult</code> method computes the variance using  * updating formulas based on West's algorithm, as described in * <a href="http://doi.acm.org/10.1145/359146.359152"> Chan, T. F. and * J. G. Lewis 1979, <i>Communications of the ACM</i>, * vol. 22 no. 9, pp. 526-531.</a></li> * <li> The <code>evaluate</code> methods leverage the fact that they have the * full array of values in memory to execute a two-pass algorithm.  * Specifically, these methods use the "corrected two-pass algorithm" from * Chan, Golub, Levesque, <i>Algorithms for Computing the Sample Variance</i>, * American Statistician, August 1983.</li></ul> * Note that adding values using <code>increment</code> or  * <code>incrementAll</code> and then executing <code>getResult</code> will * sometimes give a different, less accurate, result than executing  * <code>evaluate</code> with the full array of values. The former approach * should only be used when the full array of values is not available.</p> * <p> * The "population variance"  ( sum((x_i - mean)^2) / n ) can also * be computed using this statistic.  The <code>isBiasCorrected</code> * property determines whether the "population" or "sample" value is * returned by the <code>evaluate</code> and <code>getResult</code> methods. * To compute population variances, set this property to <code>false.</code> * </p> * <p> * <strong>Note that this implementation is not synchronized.</strong> If  * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the <code>increment()</code> or  * <code>clear()</code> method, it must be synchronized externally.</p> *  * @version $Revision: 619822 $ $Date: 2008-02-08 03:08:59 -0700 (Fri, 08 Feb 2008) $ */public class Variance extends AbstractStorelessUnivariateStatistic implements Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = -9111962718267217978L;            /** SecondMoment is used in incremental calculation of Variance*/    protected SecondMoment moment = null;    /**     * Boolean test to determine if this Variance should also increment     * the second moment, this evaluates to false when this Variance is     * constructed with an external SecondMoment as a parameter.     */    protected boolean incMoment = true;        /**     * Determines whether or not bias correction is applied when computing the     * value of the statisic.  True means that bias is corrected.  See      * {@link Variance} for details on the formula.     */    private boolean isBiasCorrected = true;    /**     * Constructs a Variance with default (true) <code>isBiasCorrected</code>     * property.     */    public Variance() {        moment = new SecondMoment();    }    /**     * Constructs a Variance based on an external second moment.     *      * @param m2 the SecondMoment (Third or Fourth moments work     * here as well.)     */    public Variance(final SecondMoment m2) {        incMoment = false;        this.moment = m2;    }        /**     * Constructs a Variance with the specified <code>isBiasCorrected</code>     * property     *      * @param isBiasCorrected  setting for bias correction - true means     * bias will be corrected and is equivalent to using the argumentless     * constructor     */    public Variance(boolean isBiasCorrected) {        moment = new SecondMoment();        this.isBiasCorrected = isBiasCorrected;    }        /**     * Constructs a Variance with the specified <code>isBiasCorrected</code>     * property and the supplied external second moment.     *      * @param isBiasCorrected  setting for bias correction - true means     * bias will be corrected     * @param m2 the SecondMoment (Third or Fourth moments work     * here as well.)     */    public Variance(boolean isBiasCorrected, SecondMoment m2) {        incMoment = false;        this.moment = m2;        this.isBiasCorrected = isBiasCorrected;          }       /**     * {@inheritDoc}       * <p>If all values are available, it is more accurate to use      * {@link #evaluate(double[])} rather than adding values one at a time     * using this method and then executing {@link #getResult}, since     * <code>evaluate</code> leverages the fact that is has the full      * list of values together to execute a two-pass algorithm.       * See {@link Variance}.</p>     */    public void increment(final double d) {        if (incMoment) {            moment.increment(d);        }    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getResult()     */    public double getResult() {            if (moment.n == 0) {                return Double.NaN;            } else if (moment.n == 1) {                return 0d;            } else {                if (isBiasCorrected) {                    return moment.m2 / ((double) moment.n - 1d);                } else {                    return moment.m2 / ((double) moment.n);                }            }    }    /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN()     */    public long getN() {        return moment.getN();    }        /**     * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear()     */    public void clear() {        if (incMoment) {            moment.clear();        }    }        /**     * Returns the variance of the entries in the input array, or      * <code>Double.NaN</code> if the array is empty.     * <p>     * See {@link Variance} for details on the computing algorithm.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @return the variance of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null     */    public double evaluate(final double[] values) {        if (values == null) {            throw new IllegalArgumentException("input values array is null");        }        return evaluate(values, 0, values.length);    }    /**     * Returns the variance of the entries in the specified portion of     * the input array, or <code>Double.NaN</code> if the designated subarray     * is empty.     * <p>     * See {@link Variance} for details on the computing algorithm.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Does not change the internal state of the statistic.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     *      * @param values the input array     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the variance of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public double evaluate(final double[] values, final int begin, final int length) {        double var = Double.NaN;        if (test(values, begin, length)) {            clear();            if (length == 1) {                var = 0.0;            } else if (length > 1) {                Mean mean = new Mean();                double m = mean.evaluate(values, begin, length);                var = evaluate(values, m, begin, length);            }        }        return var;    }        /**     * Returns the variance of the entries in the specified portion of     * the input array, using the precomputed mean value.  Returns      * <code>Double.NaN</code> if the designated subarray is empty.     * <p>     * See {@link Variance} for details on the computing algorithm.</p>     * <p>     * The formula used assumes that the supplied mean value is the arithmetic     * mean of the sample data, not a known population parameter.  This method     * is supplied only to save computation when the mean has already been     * computed.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @param begin index of the first array element to include     * @param length the number of elements to include     * @return the variance of the values or Double.NaN if length = 0     * @throws IllegalArgumentException if the array is null or the array index     *  parameters are not valid     */    public double evaluate(final double[] values, final double mean,             final int begin, final int length) {                double var = Double.NaN;        if (test(values, begin, length)) {            if (length == 1) {                var = 0.0;            } else if (length > 1) {                double accum = 0.0;                double dev = 0.0;                double accum2 = 0.0;                for (int i = begin; i < begin + length; i++) {                    dev = values[i] - mean;                    accum += dev * dev;                    accum2 += dev;                }                double len = (double) length;                            if (isBiasCorrected) {                    var = (accum - (accum2 * accum2 / len)) / (len - 1.0);                } else {                    var = (accum - (accum2 * accum2 / len)) / len;                }            }        }        return var;    }        /**     * Returns the variance of the entries in the input array, using the     * precomputed mean value.  Returns <code>Double.NaN</code> if the array     * is empty.     * <p>     * See {@link Variance} for details on the computing algorithm.</p>     * <p>     * If <code>isBiasCorrected</code> is <code>true</code> the formula used     * assumes that the supplied mean value is the arithmetic mean of the     * sample data, not a known population parameter.  If the mean is a known     * population parameter, or if the "population" version of the variance is     * desired, set <code>isBiasCorrected</code> to <code>false</code> before     * invoking this method.</p>     * <p>     * Returns 0 for a single-value (i.e. length = 1) sample.</p>     * <p>     * Throws <code>IllegalArgumentException</code> if the array is null.</p>     * <p>     * Does not change the internal state of the statistic.</p>     *      * @param values the input array     * @param mean the precomputed mean value     * @return the variance of the values or Double.NaN if the array is empty     * @throws IllegalArgumentException if the array is null     */    public double evaluate(final double[] values, final double mean) {        return evaluate(values, mean, 0, values.length);    }    /**     * @return Returns the isBiasCorrected.     */    public boolean isBiasCorrected() {        return isBiasCorrected;    }    /**     * @param isBiasCorrected The isBiasCorrected to set.     */    public void setBiasCorrected(boolean isBiasCorrected) {        this.isBiasCorrected = isBiasCorrected;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -