📄 variance.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.descriptive.moment;import java.io.Serializable;import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;/** * Computes the variance of the available values. By default, the unbiased * "sample variance" definitional formula is used: * <p> * variance = sum((x_i - mean)^2) / (n - 1) </p> * <p> * where mean is the {@link Mean} and <code>n</code> is the number * of sample observations.</p> * <p> * The definitional formula does not have good numerical properties, so * this implementation does not compute the statistic using the definitional * formula. <ul> * <li> The <code>getResult</code> method computes the variance using * updating formulas based on West's algorithm, as described in * <a href="http://doi.acm.org/10.1145/359146.359152"> Chan, T. F. and * J. G. Lewis 1979, <i>Communications of the ACM</i>, * vol. 22 no. 9, pp. 526-531.</a></li> * <li> The <code>evaluate</code> methods leverage the fact that they have the * full array of values in memory to execute a two-pass algorithm. * Specifically, these methods use the "corrected two-pass algorithm" from * Chan, Golub, Levesque, <i>Algorithms for Computing the Sample Variance</i>, * American Statistician, August 1983.</li></ul> * Note that adding values using <code>increment</code> or * <code>incrementAll</code> and then executing <code>getResult</code> will * sometimes give a different, less accurate, result than executing * <code>evaluate</code> with the full array of values. The former approach * should only be used when the full array of values is not available.</p> * <p> * The "population variance" ( sum((x_i - mean)^2) / n ) can also * be computed using this statistic. The <code>isBiasCorrected</code> * property determines whether the "population" or "sample" value is * returned by the <code>evaluate</code> and <code>getResult</code> methods. * To compute population variances, set this property to <code>false.</code> * </p> * <p> * <strong>Note that this implementation is not synchronized.</strong> If * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the <code>increment()</code> or * <code>clear()</code> method, it must be synchronized externally.</p> * * @version $Revision: 619822 $ $Date: 2008-02-08 03:08:59 -0700 (Fri, 08 Feb 2008) $ */public class Variance extends AbstractStorelessUnivariateStatistic implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -9111962718267217978L; /** SecondMoment is used in incremental calculation of Variance*/ protected SecondMoment moment = null; /** * Boolean test to determine if this Variance should also increment * the second moment, this evaluates to false when this Variance is * constructed with an external SecondMoment as a parameter. */ protected boolean incMoment = true; /** * Determines whether or not bias correction is applied when computing the * value of the statisic. True means that bias is corrected. See * {@link Variance} for details on the formula. */ private boolean isBiasCorrected = true; /** * Constructs a Variance with default (true) <code>isBiasCorrected</code> * property. */ public Variance() { moment = new SecondMoment(); } /** * Constructs a Variance based on an external second moment. * * @param m2 the SecondMoment (Third or Fourth moments work * here as well.) */ public Variance(final SecondMoment m2) { incMoment = false; this.moment = m2; } /** * Constructs a Variance with the specified <code>isBiasCorrected</code> * property * * @param isBiasCorrected setting for bias correction - true means * bias will be corrected and is equivalent to using the argumentless * constructor */ public Variance(boolean isBiasCorrected) { moment = new SecondMoment(); this.isBiasCorrected = isBiasCorrected; } /** * Constructs a Variance with the specified <code>isBiasCorrected</code> * property and the supplied external second moment. * * @param isBiasCorrected setting for bias correction - true means * bias will be corrected * @param m2 the SecondMoment (Third or Fourth moments work * here as well.) */ public Variance(boolean isBiasCorrected, SecondMoment m2) { incMoment = false; this.moment = m2; this.isBiasCorrected = isBiasCorrected; } /** * {@inheritDoc} * <p>If all values are available, it is more accurate to use * {@link #evaluate(double[])} rather than adding values one at a time * using this method and then executing {@link #getResult}, since * <code>evaluate</code> leverages the fact that is has the full * list of values together to execute a two-pass algorithm. * See {@link Variance}.</p> */ public void increment(final double d) { if (incMoment) { moment.increment(d); } } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getResult() */ public double getResult() { if (moment.n == 0) { return Double.NaN; } else if (moment.n == 1) { return 0d; } else { if (isBiasCorrected) { return moment.m2 / ((double) moment.n - 1d); } else { return moment.m2 / ((double) moment.n); } } } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN() */ public long getN() { return moment.getN(); } /** * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear() */ public void clear() { if (incMoment) { moment.clear(); } } /** * Returns the variance of the entries in the input array, or * <code>Double.NaN</code> if the array is empty. * <p> * See {@link Variance} for details on the computing algorithm.</p> * <p> * Returns 0 for a single-value (i.e. length = 1) sample.</p> * <p> * Throws <code>IllegalArgumentException</code> if the array is null.</p> * <p> * Does not change the internal state of the statistic.</p> * * @param values the input array * @return the variance of the values or Double.NaN if length = 0 * @throws IllegalArgumentException if the array is null */ public double evaluate(final double[] values) { if (values == null) { throw new IllegalArgumentException("input values array is null"); } return evaluate(values, 0, values.length); } /** * Returns the variance of the entries in the specified portion of * the input array, or <code>Double.NaN</code> if the designated subarray * is empty. * <p> * See {@link Variance} for details on the computing algorithm.</p> * <p> * Returns 0 for a single-value (i.e. length = 1) sample.</p> * <p> * Does not change the internal state of the statistic.</p> * <p> * Throws <code>IllegalArgumentException</code> if the array is null.</p> * * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the variance of the values or Double.NaN if length = 0 * @throws IllegalArgumentException if the array is null or the array index * parameters are not valid */ public double evaluate(final double[] values, final int begin, final int length) { double var = Double.NaN; if (test(values, begin, length)) { clear(); if (length == 1) { var = 0.0; } else if (length > 1) { Mean mean = new Mean(); double m = mean.evaluate(values, begin, length); var = evaluate(values, m, begin, length); } } return var; } /** * Returns the variance of the entries in the specified portion of * the input array, using the precomputed mean value. Returns * <code>Double.NaN</code> if the designated subarray is empty. * <p> * See {@link Variance} for details on the computing algorithm.</p> * <p> * The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed.</p> * <p> * Returns 0 for a single-value (i.e. length = 1) sample.</p> * <p> * Throws <code>IllegalArgumentException</code> if the array is null.</p> * <p> * Does not change the internal state of the statistic.</p> * * @param values the input array * @param mean the precomputed mean value * @param begin index of the first array element to include * @param length the number of elements to include * @return the variance of the values or Double.NaN if length = 0 * @throws IllegalArgumentException if the array is null or the array index * parameters are not valid */ public double evaluate(final double[] values, final double mean, final int begin, final int length) { double var = Double.NaN; if (test(values, begin, length)) { if (length == 1) { var = 0.0; } else if (length > 1) { double accum = 0.0; double dev = 0.0; double accum2 = 0.0; for (int i = begin; i < begin + length; i++) { dev = values[i] - mean; accum += dev * dev; accum2 += dev; } double len = (double) length; if (isBiasCorrected) { var = (accum - (accum2 * accum2 / len)) / (len - 1.0); } else { var = (accum - (accum2 * accum2 / len)) / len; } } } return var; } /** * Returns the variance of the entries in the input array, using the * precomputed mean value. Returns <code>Double.NaN</code> if the array * is empty. * <p> * See {@link Variance} for details on the computing algorithm.</p> * <p> * If <code>isBiasCorrected</code> is <code>true</code> the formula used * assumes that the supplied mean value is the arithmetic mean of the * sample data, not a known population parameter. If the mean is a known * population parameter, or if the "population" version of the variance is * desired, set <code>isBiasCorrected</code> to <code>false</code> before * invoking this method.</p> * <p> * Returns 0 for a single-value (i.e. length = 1) sample.</p> * <p> * Throws <code>IllegalArgumentException</code> if the array is null.</p> * <p> * Does not change the internal state of the statistic.</p> * * @param values the input array * @param mean the precomputed mean value * @return the variance of the values or Double.NaN if the array is empty * @throws IllegalArgumentException if the array is null */ public double evaluate(final double[] values, final double mean) { return evaluate(values, mean, 0, values.length); } /** * @return Returns the isBiasCorrected. */ public boolean isBiasCorrected() { return isBiasCorrected; } /** * @param isBiasCorrected The isBiasCorrected to set. */ public void setBiasCorrected(boolean isBiasCorrected) { this.isBiasCorrected = isBiasCorrected; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -