📄 chisquaretestimpl.java
字号:
*/ public double chiSquareDataSetsComparison(long[] observed1, long[] observed2) throws IllegalArgumentException { // Make sure lengths are same if ((observed1.length < 2) || (observed1.length != observed2.length)) { throw new IllegalArgumentException( "oberved1, observed2 array lengths incorrect"); } // Ensure non-negative counts if (!isNonNegative(observed1) || !isNonNegative(observed2)) { throw new IllegalArgumentException( "observed counts must be non-negative"); } // Compute and compare count sums long countSum1 = 0; long countSum2 = 0; boolean unequalCounts = false; double weight = 0.0; for (int i = 0; i < observed1.length; i++) { countSum1 += observed1[i]; countSum2 += observed2[i]; } // Ensure neither sample is uniformly 0 if (countSum1 * countSum2 == 0) { throw new IllegalArgumentException( "observed counts cannot all be 0"); } // Compare and compute weight only if different unequalCounts = (countSum1 != countSum2); if (unequalCounts) { weight = Math.sqrt((double) countSum1 / (double) countSum2); } // Compute ChiSquare statistic double sumSq = 0.0d; double dev = 0.0d; double obs1 = 0.0d; double obs2 = 0.0d; for (int i = 0; i < observed1.length; i++) { if (observed1[i] == 0 && observed2[i] == 0) { throw new IllegalArgumentException( "observed counts must not both be zero"); } else { obs1 = (double) observed1[i]; obs2 = (double) observed2[i]; if (unequalCounts) { // apply weights dev = obs1/weight - obs2 * weight; } else { dev = obs1 - obs2; } sumSq += (dev * dev) / (obs1 + obs2); } } return sumSq; } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value * @since 1.2 */ public double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2) throws IllegalArgumentException, MathException { distribution.setDegreesOfFreedom((double) observed1.length - 1); return 1 - distribution.cumulativeProbability( chiSquareDataSetsComparison(observed1, observed2)); } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test * @since 1.2 */ public boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException( "bad significance level: " + alpha); } return (chiSquareTestDataSetsComparison(observed1, observed2) < alpha); } /** * Checks to make sure that the input long[][] array is rectangular, * has at least 2 rows and 2 columns, and has all non-negative entries, * throwing IllegalArgumentException if any of these checks fail. * * @param in input 2-way table to check * @throws IllegalArgumentException if the array is not valid */ private void checkArray(long[][] in) throws IllegalArgumentException { if (in.length < 2) { throw new IllegalArgumentException("Input table must have at least two rows"); } if (in[0].length < 2) { throw new IllegalArgumentException("Input table must have at least two columns"); } if (!isRectangular(in)) { throw new IllegalArgumentException("Input table must be rectangular"); } if (!isNonNegative(in)) { throw new IllegalArgumentException("All entries in input 2-way table must be non-negative"); } } //--------------------- Protected methods --------------------------------- /** * Gets a DistributionFactory to use in creating ChiSquaredDistribution instances. * @deprecated inject ChiSquaredDistribution instances directly instead of * using a factory. */ protected DistributionFactory getDistributionFactory() { return DistributionFactory.newInstance(); } //--------------------- Private array methods -- should find a utility home for these /** * Returns true iff input array is rectangular. * * @param in array to be tested * @return true if the array is rectangular * @throws NullPointerException if input array is null * @throws ArrayIndexOutOfBoundsException if input array is empty */ private boolean isRectangular(long[][] in) { for (int i = 1; i < in.length; i++) { if (in[i].length != in[0].length) { return false; } } return true; } /** * Returns true iff all entries of the input array are > 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are positive * @throws NullPointerException if input array is null */ private boolean isPositive(double[] in) { for (int i = 0; i < in.length; i ++) { if (in[i] <= 0) { return false; } } return true; } /** * Returns true iff all entries of the input array are >= 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are non-negative * @throws NullPointerException if input array is null */ private boolean isNonNegative(long[] in) { for (int i = 0; i < in.length; i ++) { if (in[i] < 0) { return false; } } return true; } /** * Returns true iff all entries of (all subarrays of) the input array are >= 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are non-negative * @throws NullPointerException if input array is null */ private boolean isNonNegative(long[][] in) { for (int i = 0; i < in.length; i ++) { for (int j = 0; j < in[i].length; j++) { if (in[i][j] < 0) { return false; } } } return true; } /** * Modify the distribution used to compute inference statistics. * * @param value * the new distribution * @since 1.2 */ public void setDistribution(ChiSquaredDistribution value) { distribution = value; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -