📄 chisquaretestimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.stat.inference;import org.apache.commons.math.MathException;import org.apache.commons.math.distribution.ChiSquaredDistribution;import org.apache.commons.math.distribution.ChiSquaredDistributionImpl;import org.apache.commons.math.distribution.DistributionFactory;/** * Implements Chi-Square test statistics defined in the * {@link UnknownDistributionChiSquareTest} interface. * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ */public class ChiSquareTestImpl implements UnknownDistributionChiSquareTest { /** Distribution used to compute inference statistics. */ private ChiSquaredDistribution distribution; /** * Construct a ChiSquareTestImpl */ public ChiSquareTestImpl() { this(new ChiSquaredDistributionImpl(1.0)); } /** * Create a test instance using the given distribution for computing * inference statistics. * @param x distribution used to compute inference statistics. * @since 1.2 */ public ChiSquareTestImpl(ChiSquaredDistribution x) { super(); setDistribution(x); } /** * {@inheritDoc} * <p><strong>Note: </strong>This implementation rescales the * <code>expected</code> array if necessary to ensure that the sum of the * expected and observed counts are equal.</p> * * @param observed array of observed frequency counts * @param expected array of expected frequency counts * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met * or length is less than 2 */ public double chiSquare(double[] expected, long[] observed) throws IllegalArgumentException { if ((expected.length < 2) || (expected.length != observed.length)) { throw new IllegalArgumentException( "observed, expected array lengths incorrect"); } if (!isPositive(expected) || !isNonNegative(observed)) { throw new IllegalArgumentException( "observed counts must be non-negative and expected counts must be postive"); } double sumExpected = 0d; double sumObserved = 0d; for (int i = 0; i < observed.length; i++) { sumExpected += expected[i]; sumObserved += observed[i]; } double ratio = 1.0d; boolean rescale = false; if (Math.abs(sumExpected - sumObserved) > 10E-6) { ratio = sumObserved / sumExpected; rescale = true; } double sumSq = 0.0d; double dev = 0.0d; for (int i = 0; i < observed.length; i++) { if (rescale) { dev = ((double) observed[i] - ratio * expected[i]); sumSq += dev * dev / (ratio * expected[i]); } else { dev = ((double) observed[i] - expected[i]); sumSq += dev * dev / expected[i]; } } return sumSq; } /** * {@inheritDoc} * <p><strong>Note: </strong>This implementation rescales the * <code>expected</code> array if necessary to ensure that the sum of the * expected and observed counts are equal.</p> * * @param observed array of observed frequency counts * @param expected array of expected frequency counts * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value */ public double chiSquareTest(double[] expected, long[] observed) throws IllegalArgumentException, MathException { distribution.setDegreesOfFreedom(expected.length - 1.0); return 1.0 - distribution.cumulativeProbability( chiSquare(expected, observed)); } /** * {@inheritDoc} * <p><strong>Note: </strong>This implementation rescales the * <code>expected</code> array if necessary to ensure that the sum of the * expected and observed counts are equal.</p> * * @param observed array of observed frequency counts * @param expected array of expected frequency counts * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test */ public boolean chiSquareTest(double[] expected, long[] observed, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException( "bad significance level: " + alpha); } return (chiSquareTest(expected, observed) < alpha); } /** * @param counts array representation of 2-way table * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met */ public double chiSquare(long[][] counts) throws IllegalArgumentException { checkArray(counts); int nRows = counts.length; int nCols = counts[0].length; // compute row, column and total sums double[] rowSum = new double[nRows]; double[] colSum = new double[nCols]; double total = 0.0d; for (int row = 0; row < nRows; row++) { for (int col = 0; col < nCols; col++) { rowSum[row] += (double) counts[row][col]; colSum[col] += (double) counts[row][col]; total += (double) counts[row][col]; } } // compute expected counts and chi-square double sumSq = 0.0d; double expected = 0.0d; for (int row = 0; row < nRows; row++) { for (int col = 0; col < nCols; col++) { expected = (rowSum[row] * colSum[col]) / total; sumSq += (((double) counts[row][col] - expected) * ((double) counts[row][col] - expected)) / expected; } } return sumSq; } /** * @param counts array representation of 2-way table * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value */ public double chiSquareTest(long[][] counts) throws IllegalArgumentException, MathException { checkArray(counts); double df = ((double) counts.length -1) * ((double) counts[0].length - 1); distribution.setDegreesOfFreedom(df); return 1 - distribution.cumulativeProbability(chiSquare(counts)); } /** * @param counts array representation of 2-way table * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test */ public boolean chiSquareTest(long[][] counts, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException("bad significance level: " + alpha); } return (chiSquareTest(counts) < alpha); } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met * @since 1.2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -