⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ttest.java

📁 Apache的common math数学软件包
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
     * </li></ul></p>     *     * @param sample1 array of sample data values     * @param sample2 array of sample data values     * @return p-value for t-test     * @throws IllegalArgumentException if the precondition is not met     * @throws MathException if an error occurs computing the p-value     */    public abstract double homoscedasticTTest(        double[] sample1,        double[] sample2)        throws IllegalArgumentException, MathException;    /**     * Performs a      * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">     * two-sided t-test</a> evaluating the null hypothesis that <code>sample1</code>      * and <code>sample2</code> are drawn from populations with the same mean,      * with significance level <code>alpha</code>.  This test does not assume     * that the subpopulation variances are equal.  To perform the test assuming     * equal variances, use      * {@link #homoscedasticTTest(double[], double[], double)}.     * <p>     * Returns <code>true</code> iff the null hypothesis that the means are     * equal can be rejected with confidence <code>1 - alpha</code>.  To      * perform a 1-sided test, use <code>alpha * 2</code></p>     * <p>     * See {@link #t(double[], double[])} for the formula used to compute the     * t-statistic.  Degrees of freedom are approximated using the     * <a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm">     * Welch-Satterthwaite approximation.</a></p>     * <p>     * <strong>Examples:</strong><br><ol>     * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at     * the 95% level,  use      * <br><code>tTest(sample1, sample2, 0.05). </code>     * </li>     * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,     * at the 99% level, first verify that the measured  mean of <code>sample 1</code>     * is less than the mean of <code>sample 2</code> and then use      * <br><code>tTest(sample1, sample2, 0.02) </code>     * </li></ol></p>     * <p>     * <strong>Usage Note:</strong><br>     * The validity of the test depends on the assumptions of the parametric     * t-test procedure, as discussed      * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">     * here</a></p>     * <p>     * <strong>Preconditions</strong>: <ul>     * <li>The observed array lengths must both be at least 2.     * </li>     * <li> <code> 0 < alpha < 0.5 </code>     * </li></ul></p>     *     * @param sample1 array of sample data values     * @param sample2 array of sample data values     * @param alpha significance level of the test     * @return true if the null hypothesis can be rejected with      * confidence 1 - alpha     * @throws IllegalArgumentException if the preconditions are not met     * @throws MathException if an error occurs performing the test     */    public abstract boolean tTest(        double[] sample1,        double[] sample2,        double alpha)        throws IllegalArgumentException, MathException;    /**     * Performs a      * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">     * two-sided t-test</a> evaluating the null hypothesis that <code>sample1</code>      * and <code>sample2</code> are drawn from populations with the same mean,      * with significance level <code>alpha</code>,  assuming that the     * subpopulation variances are equal.  Use      * {@link #tTest(double[], double[], double)} to perform the test without     * the assumption of equal variances.     * <p>     * Returns <code>true</code> iff the null hypothesis that the means are     * equal can be rejected with confidence <code>1 - alpha</code>.  To      * perform a 1-sided test, use <code>alpha * 2.</code>  To perform the test     * without the assumption of equal subpopulation variances, use      * {@link #tTest(double[], double[], double)}.</p>     * <p>     * A pooled variance estimate is used to compute the t-statistic. See     * {@link #t(double[], double[])} for the formula. The sum of the sample     * sizes minus 2 is used as the degrees of freedom.</p>     * <p>     * <strong>Examples:</strong><br><ol>     * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at     * the 95% level, use <br><code>tTest(sample1, sample2, 0.05). </code>     * </li>     * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2, </code>     * at the 99% level, first verify that the measured mean of      * <code>sample 1</code> is less than the mean of <code>sample 2</code>     * and then use     * <br><code>tTest(sample1, sample2, 0.02) </code>     * </li></ol></p>     * <p>     * <strong>Usage Note:</strong><br>     * The validity of the test depends on the assumptions of the parametric     * t-test procedure, as discussed      * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">     * here</a></p>     * <p>     * <strong>Preconditions</strong>: <ul>     * <li>The observed array lengths must both be at least 2.     * </li>     * <li> <code> 0 < alpha < 0.5 </code>     * </li></ul></p>     *     * @param sample1 array of sample data values     * @param sample2 array of sample data values     * @param alpha significance level of the test     * @return true if the null hypothesis can be rejected with      * confidence 1 - alpha     * @throws IllegalArgumentException if the preconditions are not met     * @throws MathException if an error occurs performing the test     */    public abstract boolean homoscedasticTTest(        double[] sample1,        double[] sample2,        double alpha)        throws IllegalArgumentException, MathException;    /**     * Returns the <i>observed significance level</i>, or      * <i>p-value</i>, associated with a two-sample, two-tailed t-test      * comparing the means of the datasets described by two StatisticalSummary     * instances.     * <p>     * The number returned is the smallest significance level     * at which one can reject the null hypothesis that the two means are     * equal in favor of the two-sided alternative that they are different.      * For a one-sided test, divide the returned value by 2.</p>     * <p>     * The test does not assume that the underlying popuation variances are     * equal  and it uses approximated degrees of freedom computed from the      * sample data to compute the p-value.   To perform the test assuming     * equal variances, use      * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.</p>     * <p>     * <strong>Usage Note:</strong><br>     * The validity of the p-value depends on the assumptions of the parametric     * t-test procedure, as discussed      * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">     * here</a></p>     * <p>     * <strong>Preconditions</strong>: <ul>     * <li>The datasets described by the two Univariates must each contain     * at least 2 observations.     * </li></ul></p>     *     * @param sampleStats1  StatisticalSummary describing data from the first sample     * @param sampleStats2  StatisticalSummary describing data from the second sample     * @return p-value for t-test     * @throws IllegalArgumentException if the precondition is not met     * @throws MathException if an error occurs computing the p-value     */    public abstract double tTest(        StatisticalSummary sampleStats1,        StatisticalSummary sampleStats2)        throws IllegalArgumentException, MathException;    /**     * Returns the <i>observed significance level</i>, or      * <i>p-value</i>, associated with a two-sample, two-tailed t-test      * comparing the means of the datasets described by two StatisticalSummary     * instances, under the hypothesis of equal subpopulation variances. To     * perform a test without the equal variances assumption, use     * {@link #tTest(StatisticalSummary, StatisticalSummary)}.     * <p>     * The number returned is the smallest significance level     * at which one can reject the null hypothesis that the two means are     * equal in favor of the two-sided alternative that they are different.      * For a one-sided test, divide the returned value by 2.</p>     * <p>     * See {@link #homoscedasticT(double[], double[])} for the formula used to     * compute the t-statistic. The sum of the  sample sizes minus 2 is used as     * the degrees of freedom.</p>     * <p>     * <strong>Usage Note:</strong><br>     * The validity of the p-value depends on the assumptions of the parametric     * t-test procedure, as discussed      * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">here</a>     * </p><p>     * <strong>Preconditions</strong>: <ul>     * <li>The datasets described by the two Univariates must each contain     * at least 2 observations.     * </li></ul></p>     *     * @param sampleStats1  StatisticalSummary describing data from the first sample     * @param sampleStats2  StatisticalSummary describing data from the second sample     * @return p-value for t-test     * @throws IllegalArgumentException if the precondition is not met     * @throws MathException if an error occurs computing the p-value     */    public abstract double homoscedasticTTest(        StatisticalSummary sampleStats1,        StatisticalSummary sampleStats2)        throws IllegalArgumentException, MathException;    /**     * Performs a      * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">     * two-sided t-test</a> evaluating the null hypothesis that      * <code>sampleStats1</code> and <code>sampleStats2</code> describe     * datasets drawn from populations with the same mean, with significance     * level <code>alpha</code>.   This test does not assume that the     * subpopulation variances are equal.  To perform the test under the equal     * variances assumption, use     * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.     * <p>     * Returns <code>true</code> iff the null hypothesis that the means are     * equal can be rejected with confidence <code>1 - alpha</code>.  To      * perform a 1-sided test, use <code>alpha * 2</code></p>     * <p>     * See {@link #t(double[], double[])} for the formula used to compute the     * t-statistic.  Degrees of freedom are approximated using the     * <a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm">     * Welch-Satterthwaite approximation.</a></p>     * <p>     * <strong>Examples:</strong><br><ol>     * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at     * the 95%, use      * <br><code>tTest(sampleStats1, sampleStats2, 0.05) </code>     * </li>     * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>     * at the 99% level,  first verify that the measured mean of       * <code>sample 1</code> is less than  the mean of <code>sample 2</code>     * and then use      * <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>     * </li></ol></p>     * <p>     * <strong>Usage Note:</strong><br>     * The validity of the test depends on the assumptions of the parametric     * t-test procedure, as discussed      * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">     * here</a></p>     * <p>     * <strong>Preconditions</strong>: <ul>     * <li>The datasets described by the two Univariates must each contain     * at least 2 observations.     * </li>     * <li> <code> 0 < alpha < 0.5 </code>     * </li></ul></p>     *     * @param sampleStats1 StatisticalSummary describing sample data values     * @param sampleStats2 StatisticalSummary describing sample data values     * @param alpha significance level of the test     * @return true if the null hypothesis can be rejected with      * confidence 1 - alpha     * @throws IllegalArgumentException if the preconditions are not met     * @throws MathException if an error occurs performing the test     */    public abstract boolean tTest(        StatisticalSummary sampleStats1,        StatisticalSummary sampleStats2,        double alpha)        throws IllegalArgumentException, MathException;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -