📄 complex.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.complex;import java.io.Serializable;import org.apache.commons.math.util.MathUtils;/** * Representation of a Complex number - a number which has both a * real and imaginary part. * <p> * Implementations of arithmetic operations handle <code>NaN</code> and * infinite values according to the rules for {@link java.lang.Double} * arithmetic, applying definitional formulas and returning <code>NaN</code> or * infinite values in real or imaginary parts as these arise in computation. * See individual method javadocs for details.</p> * <p> * {@link #equals} identifies all values with <code>NaN</code> in either real * or imaginary part - e.g., <pre> * <code>1 + NaNi == NaN + i == NaN + NaNi.</code></pre></p> * * @version $Revision: 620373 $ $Date: 2008-02-10 18:18:39 -0700 (Sun, 10 Feb 2008) $ */public class Complex implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -6530173849413811929L; /** The square root of -1. A number representing "0.0 + 1.0i" */ public static final Complex I = new Complex(0.0, 1.0); /** A complex number representing "NaN + NaNi" */ public static final Complex NaN = new Complex(Double.NaN, Double.NaN); /** A complex number representing "+INF + INFi" */ public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A complex number representing "1.0 + 0.0i" */ public static final Complex ONE = new Complex(1.0, 0.0); /** A complex number representing "0.0 + 0.0i" */ public static final Complex ZERO = new Complex(0.0, 0.0); /** * The imaginary part * @deprecated to be made final and private in 2.0 */ protected double imaginary; /** * The real part * @deprecated to be made final and private in 2.0 */ protected double real; /** * Create a complex number given the real and imaginary parts. * * @param real the real part * @param imaginary the imaginary part */ public Complex(double real, double imaginary) { super(); this.real = real; this.imaginary = imaginary; } /** * Return the absolute value of this complex number. * <p> * Returns <code>NaN</code> if either real or imaginary part is * <code>NaN</code> and <code>Double.POSITIVE_INFINITY</code> if * neither part is <code>NaN</code>, but at least one part takes an infinite * value.</p> * * @return the absolute value */ public double abs() { if (isNaN()) { return Double.NaN; } if (isInfinite()) { return Double.POSITIVE_INFINITY; } if (Math.abs(real) < Math.abs(imaginary)) { if (imaginary == 0.0) { return Math.abs(real); } double q = real / imaginary; return (Math.abs(imaginary) * Math.sqrt(1 + q*q)); } else { if (real == 0.0) { return Math.abs(imaginary); } double q = imaginary / real; return (Math.abs(real) * Math.sqrt(1 + q*q)); } } /** * Return the sum of this complex number and the given complex number. * <p> * Uses the definitional formula * <pre> * (a + bi) + (c + di) = (a+c) + (b+d)i * </pre></p> * <p> * If either this or <code>rhs</code> has a NaN value in either part, * {@link #NaN} is returned; otherwise Inifinite and NaN values are * returned in the parts of the result according to the rules for * {@link java.lang.Double} arithmetic.</p> * * @param rhs the other complex number * @return the complex number sum * @throws NullPointerException if <code>rhs</code> is null */ public Complex add(Complex rhs) { return createComplex(real + rhs.getReal(), imaginary + rhs.getImaginary()); } /** * Return the conjugate of this complex number. The conjugate of * "A + Bi" is "A - Bi". * <p> * {@link #NaN} is returned if either the real or imaginary * part of this Complex number equals <code>Double.NaN</code>.</p> * <p> * If the imaginary part is infinite, and the real part is not NaN, * the returned value has infinite imaginary part of the opposite * sign - e.g. the conjugate of <code>1 + POSITIVE_INFINITY i</code> * is <code>1 - NEGATIVE_INFINITY i</code></p> * * @return the conjugate of this Complex object */ public Complex conjugate() { if (isNaN()) { return NaN; } return createComplex(real, -imaginary); } /** * Return the quotient of this complex number and the given complex number. * <p> * Implements the definitional formula * <pre><code> * a + bi ac + bd + (bc - ad)i * ----------- = ------------------------- * c + di c<sup>2</sup> + d<sup>2</sup> * </code></pre> * but uses * <a href="http://doi.acm.org/10.1145/1039813.1039814"> * prescaling of operands</a> to limit the effects of overflows and * underflows in the computation.</p> * <p> * Infinite and NaN values are handled / returned according to the * following rules, applied in the order presented: * <ul> * <li>If either this or <code>rhs</code> has a NaN value in either part, * {@link #NaN} is returned.</li> * <li>If <code>rhs</code> equals {@link #ZERO}, {@link #NaN} is returned. * </li> * <li>If this and <code>rhs</code> are both infinite, * {@link #NaN} is returned.</li> * <li>If this is finite (i.e., has no infinite or NaN parts) and * <code>rhs</code> is infinite (one or both parts infinite), * {@link #ZERO} is returned.</li> * <li>If this is infinite and <code>rhs</code> is finite, NaN values are * returned in the parts of the result if the {@link java.lang.Double} * rules applied to the definitional formula force NaN results.</li> * </ul></p> * * @param rhs the other complex number * @return the complex number quotient * @throws NullPointerException if <code>rhs</code> is null */ public Complex divide(Complex rhs) { if (isNaN() || rhs.isNaN()) { return NaN; } double c = rhs.getReal(); double d = rhs.getImaginary(); if (c == 0.0 && d == 0.0) { return NaN; } if (rhs.isInfinite() && !isInfinite()) { return ZERO; } if (Math.abs(c) < Math.abs(d)) { if (d == 0.0) { return createComplex(real/c, imaginary/c); } double q = c / d; double denominator = c * q + d; return createComplex((real * q + imaginary) / denominator, (imaginary * q - real) / denominator); } else { if (c == 0.0) { return createComplex(imaginary/d, -real/c); } double q = d / c; double denominator = d * q + c; return createComplex((imaginary * q + real) / denominator, (imaginary - real * q) / denominator); } } /** * Test for the equality of two Complex objects. * <p> * If both the real and imaginary parts of two Complex numbers * are exactly the same, and neither is <code>Double.NaN</code>, the two * Complex objects are considered to be equal.</p> * <p> * All <code>NaN</code> values are considered to be equal - i.e, if either * (or both) real and imaginary parts of the complex number are equal * to <code>Double.NaN</code>, the complex number is equal to * <code>Complex.NaN</code>.</p> * * @param other Object to test for equality to this * @return true if two Complex objects are equal, false if * object is null, not an instance of Complex, or * not equal to this Complex instance * */ public boolean equals(Object other) { boolean ret; if (this == other) { ret = true; } else if (other == null) { ret = false; } else { try { Complex rhs = (Complex)other; if (rhs.isNaN()) { ret = this.isNaN(); } else { ret = (Double.doubleToRawLongBits(real) == Double.doubleToRawLongBits(rhs.getReal())) && (Double.doubleToRawLongBits(imaginary) == Double.doubleToRawLongBits(rhs.getImaginary())); } } catch (ClassCastException ex) { // ignore exception ret = false; } } return ret; } /** * Get a hashCode for the complex number. * <p> * All NaN values have the same hash code.</p> * * @return a hash code value for this object */ public int hashCode() { if (isNaN()) { return 7; } return 37 * (17 * MathUtils.hash(imaginary) + MathUtils.hash(real)); } /** * Access the imaginary part. * * @return the imaginary part */ public double getImaginary() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -