📄 qrdecompositionimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.linear;/** * Calculates the QR-decomposition of a matrix. In the QR-decomposition of * a matrix A consists of two matrices Q and R that satisfy: A = QR, Q is * orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular. If A is * m×n, Q is m×m and R m×n. * <p> * Implemented using Householder reflectors.</p> * * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a> * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class QRDecompositionImpl implements QRDecomposition { /** * A packed representation of the QR decomposition. The elements above the * diagonal are the elements of R, and the columns of the lower triangle * are the Householder reflector vectors of which an explicit form of Q can * be calculated. */ private double[][] qr; /** * The diagonal elements of R. */ private double[] rDiag; /** * The row dimension of the given matrix. The size of Q will be m x m, the * size of R will be m x n. */ private int m; /** * The column dimension of the given matrix. The size of R will be m x n. */ private int n; /** * Calculates the QR decomposition of the given matrix. * * @param matrix The matrix to decompose. */ public QRDecompositionImpl(RealMatrix matrix) { m = matrix.getRowDimension(); n = matrix.getColumnDimension(); qr = matrix.getData(); rDiag = new double[n]; /* * The QR decomposition of a matrix A is calculated using Householder * reflectors by repeating the following operations to each minor * A(minor,minor) of A: */ for (int minor = 0; minor < Math.min(m, n); minor++) { /* * Let x be the first column of the minor, and a^2 = |x|^2. * x will be in the positions qr[minor][minor] through qr[m][minor]. * The first column of the transformed minor will be (a,0,0,..)' * The sign of a is chosen to be opposite to the sign of the first * component of x. Let's find a: */ double xNormSqr = 0; for (int row = minor; row < m; row++) { xNormSqr += qr[row][minor]*qr[row][minor]; } double a = Math.sqrt(xNormSqr); if (qr[minor][minor] > 0) a = -a; rDiag[minor] = a; if (a != 0.0) { /* * Calculate the normalized reflection vector v and transform * the first column. We know the norm of v beforehand: v = x-ae * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> = * a^2+a^2-2a<x,e> = 2a*(a - <x,e>). * Here <x, e> is now qr[minor][minor]. * v = x-ae is stored in the column at qr: */ qr[minor][minor] -= a; // now |v|^2 = -2a*(qr[minor][minor]) /* * Transform the rest of the columns of the minor: * They will be transformed by the matrix H = I-2vv'/|v|^2. * If x is a column vector of the minor, then * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v. * Therefore the transformation is easily calculated by * subtracting the column vector (2<x,v>/|v|^2)v from x. * * Let 2<x,v>/|v|^2 = alpha. From above we have * |v|^2 = -2a*(qr[minor][minor]), so * alpha = -<x,v>/(a*qr[minor][minor]) */ for (int col = minor+1; col < n; col++) { double alpha = 0; for (int row = minor; row < m; row++) { alpha -= qr[row][col]*qr[row][minor]; } alpha /= a*qr[minor][minor]; // Subtract the column vector alpha*v from x. for (int row = minor; row < m; row++) { qr[row][col] -= alpha*qr[row][minor]; } } } } } /** * Returns the matrix R of the QR-decomposition. * * @return the R matrix */ public RealMatrix getR() { // R is supposed to be m x n RealMatrixImpl ret = new RealMatrixImpl(m,n); double[][] r = ret.getDataRef(); // copy the diagonal from rDiag and the upper triangle of qr for (int row = Math.min(m,n)-1; row >= 0; row--) { r[row][row] = rDiag[row]; for (int col = row+1; col < n; col++) { r[row][col] = qr[row][col]; } } return ret; } /** * Returns the matrix Q of the QR-decomposition. * * @return the Q matrix */ public RealMatrix getQ() { // Q is supposed to be m x m RealMatrixImpl ret = new RealMatrixImpl(m,m); double[][] Q = ret.getDataRef(); /* * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then * applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in * succession to the result */ for (int minor = m-1; minor >= Math.min(m,n); minor--) { Q[minor][minor]=1; } for (int minor = Math.min(m,n)-1; minor >= 0; minor--){ Q[minor][minor] = 1; if (qr[minor][minor] != 0.0) { for (int col = minor; col < m; col++) { double alpha = 0; for (int row = minor; row < m; row++) { alpha -= Q[row][col] * qr[row][minor]; } alpha /= rDiag[minor]*qr[minor][minor]; for (int row = minor; row < m; row++) { Q[row][col] -= alpha*qr[row][minor]; } } } } return ret; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -