⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weibulldistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;/** * Default implementation of * {@link org.apache.commons.math.distribution.WeibullDistribution}. * * @since 1.1 * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class WeibullDistributionImpl extends AbstractContinuousDistribution        implements WeibullDistribution, Serializable {        /** Serializable version identifier */    private static final long serialVersionUID = 8589540077390120676L;        /** The shape parameter. */    private double alpha;        /** The scale parameter. */    private double beta;        /**     * Creates weibull distribution with the given shape and scale and a     * location equal to zero.     * @param alpha the shape parameter.     * @param beta the scale parameter.     */    public WeibullDistributionImpl(double alpha, double beta){        super();        setShape(alpha);        setScale(beta);    }    /**     * For this disbution, X, this method returns P(X &lt; <code>x</code>).     * @param x the value at which the CDF is evaluated.     * @return CDF evaluted at <code>x</code>.      */    public double cumulativeProbability(double x) {        double ret;        if (x <= 0.0) {            ret = 0.0;        } else {            ret = 1.0 - Math.exp(-Math.pow(x / getScale(), getShape()));        }        return ret;    }    /**     * Access the shape parameter.     * @return the shape parameter.     */    public double getShape() {        return alpha;    }        /**     * Access the scale parameter.     * @return the scale parameter.     */    public double getScale() {        return beta;    }        /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     * <p>     * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and      * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>     *     * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public double inverseCumulativeProbability(double p) {        double ret;        if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException                ("probability argument must be between 0 and 1 (inclusive)");        } else if (p == 0) {            ret = 0.0;        } else  if (p == 1) {            ret = Double.POSITIVE_INFINITY;        } else {            ret = getScale() * Math.pow(-Math.log(1.0 - p), 1.0 / getShape());        }        return ret;    }        /**     * Modify the shape parameter.     * @param alpha the new shape parameter value.     */    public void setShape(double alpha) {        if (alpha <= 0.0) {            throw new IllegalArgumentException(                "Shape must be positive.");        }               this.alpha = alpha;    }        /**     * Modify the scale parameter.     * @param beta the new scale parameter value.     */    public void setScale(double beta) {        if (beta <= 0.0) {            throw new IllegalArgumentException(                "Scale must be positive.");        }               this.beta = beta;    }    /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected double getDomainLowerBound(double p) {        return 0.0;    }    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected double getDomainUpperBound(double p) {        return Double.MAX_VALUE;    }    /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected double getInitialDomain(double p) {        // use median        return Math.pow(getScale() * Math.log(2.0), 1.0 / getShape());    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -