⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binomialdistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;import org.apache.commons.math.special.Beta;import org.apache.commons.math.util.MathUtils;/** * The default implementation of {@link BinomialDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class BinomialDistributionImpl    extends AbstractIntegerDistribution    implements BinomialDistribution, Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 6751309484392813623L;    /** The number of trials. */    private int numberOfTrials;    /** The probability of success. */    private double probabilityOfSuccess;    /**     * Create a binomial distribution with the given number of trials and     * probability of success.     * @param trials the number of trials.     * @param p the probability of success.     */    public BinomialDistributionImpl(int trials, double p) {        super();        setNumberOfTrials(trials);        setProbabilityOfSuccess(p);    }    /**     * Access the number of trials for this distribution.     * @return the number of trials.     */    public int getNumberOfTrials() {        return numberOfTrials;    }    /**     * Access the probability of success for this distribution.     * @return the probability of success.     */    public double getProbabilityOfSuccess() {        return probabilityOfSuccess;    }    /**     * Change the number of trials for this distribution.     * @param trials the new number of trials.     * @throws IllegalArgumentException if <code>trials</code> is not a valid     *         number of trials.     */    public void setNumberOfTrials(int trials) {        if (trials < 0) {            throw new IllegalArgumentException("number of trials must be non-negative.");        }        numberOfTrials = trials;    }    /**     * Change the probability of success for this distribution.     * @param p the new probability of success.     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public void setProbabilityOfSuccess(double p) {        if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException("probability of success must be between 0.0 and 1.0, inclusive.");        }        probabilityOfSuccess = p;    }    /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a PDF root.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected int getDomainLowerBound(double p) {        return -1;    }    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a PDF root.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected int getDomainUpperBound(double p) {        return getNumberOfTrials();    }    /**     * For this distribution, X, this method returns P(X &le; x).     * @param x the value at which the PDF is evaluated.     * @return PDF for this distribution.      * @throws MathException if the cumulative probability can not be     *            computed due to convergence or other numerical errors.     */    public double cumulativeProbability(int x) throws MathException {        double ret;        if (x < 0) {            ret = 0.0;        } else if (x >= getNumberOfTrials()) {            ret = 1.0;        } else {            ret =                1.0 - Beta.regularizedBeta(                        getProbabilityOfSuccess(),                        x + 1.0,                        getNumberOfTrials() - x);        }        return ret;    }    /**     * For this disbution, X, this method returns P(X = x).     *      * @param x the value at which the PMF is evaluated.     * @return PMF for this distribution.      */    public double probability(int x) {        double ret;        if (x < 0 || x > getNumberOfTrials()) {            ret = 0.0;        } else {            ret = MathUtils.binomialCoefficientDouble(                    getNumberOfTrials(), x) *                  Math.pow(getProbabilityOfSuccess(), x) *                  Math.pow(1.0 - getProbabilityOfSuccess(),                        getNumberOfTrials() - x);        }        return ret;    }        /**     * For this distribution, X, this method returns the largest x, such     * that P(X &le; x) &le; <code>p</code>.     * <p>     * Returns <code>-1</code> for p=0 and <code>Integer.MAX_VALUE</code> for     * p=1.</p>     *     * @param p the desired probability     * @return the largest x such that P(X &le; x) <= p     * @throws MathException if the inverse cumulative probability can not be     *            computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if p < 0 or p > 1     */    public int inverseCumulativeProbability(final double p) throws MathException {        // handle extreme values explicitly        if (p == 0) {            return -1;        }         if (p == 1) {            return Integer.MAX_VALUE;         }                // use default bisection impl        return super.inverseCumulativeProbability(p);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -