⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 normaldistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;import org.apache.commons.math.MaxIterationsExceededException;import org.apache.commons.math.special.Erf;/** * Default implementation of * {@link org.apache.commons.math.distribution.NormalDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class NormalDistributionImpl extends AbstractContinuousDistribution         implements NormalDistribution, Serializable {        /** Serializable version identifier */    private static final long serialVersionUID = 8589540077390120676L;    /** The mean of this distribution. */    private double mean = 0;        /** The standard deviation of this distribution. */    private double standardDeviation = 1;        /**     * Create a normal distribution using the given mean and standard deviation.     * @param mean mean for this distribution     * @param sd standard deviation for this distribution     */    public NormalDistributionImpl(double mean, double sd){        super();        setMean(mean);        setStandardDeviation(sd);    }        /**     * Creates normal distribution with the mean equal to zero and standard     * deviation equal to one.      */    public NormalDistributionImpl(){        this(0.0, 1.0);    }        /**     * Access the mean.     * @return mean for this distribution     */     public double getMean() {        return mean;    }        /**     * Modify the mean.     * @param mean for this distribution     */    public void setMean(double mean) {        this.mean = mean;    }    /**     * Access the standard deviation.     * @return standard deviation for this distribution     */    public double getStandardDeviation() {        return standardDeviation;    }    /**     * Modify the standard deviation.     * @param sd standard deviation for this distribution     * @throws IllegalArgumentException if <code>sd</code> is not positive.     */    public void setStandardDeviation(double sd) {        if (sd <= 0.0) {            throw new IllegalArgumentException(                "Standard deviation must be positive.");        }               standardDeviation = sd;    }    /**     * For this disbution, X, this method returns P(X &lt; <code>x</code>).     * @param x the value at which the CDF is evaluated.     * @return CDF evaluted at <code>x</code>.      * @throws MathException if the algorithm fails to converge; unless     * x is more than 20 standard deviations from the mean, in which case the     * convergence exception is caught and 0 or 1 is returned.     */    public double cumulativeProbability(double x) throws MathException {        try {            return 0.5 * (1.0 + Erf.erf((x - mean) /                    (standardDeviation * Math.sqrt(2.0))));        } catch (MaxIterationsExceededException ex) {            if (x < (mean - 20 * standardDeviation)) { // JDK 1.5 blows at 38                return 0.0d;            } else if (x > (mean + 20 * standardDeviation)) {                return 1.0d;            } else {                throw ex;            }        }    }        /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     * <p>     * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and      * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>     *     * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws MathException if the inverse cumulative probability can not be     *         computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public double inverseCumulativeProbability(final double p)     throws MathException {        if (p == 0) {            return Double.NEGATIVE_INFINITY;        }        if (p == 1) {            return Double.POSITIVE_INFINITY;        }        return super.inverseCumulativeProbability(p);    }        /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected double getDomainLowerBound(double p) {        double ret;        if (p < .5) {            ret = -Double.MAX_VALUE;        } else {            ret = getMean();        }                return ret;    }    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected double getDomainUpperBound(double p) {        double ret;        if (p < .5) {            ret = getMean();        } else {            ret = Double.MAX_VALUE;        }                return ret;    }    /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected double getInitialDomain(double p) {        double ret;        if (p < .5) {            ret = getMean() - getStandardDeviation();        } else if (p > .5) {            ret = getMean() + getStandardDeviation();        } else {            ret = getMean();        }                return ret;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -