📄 poissondistributionimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;import org.apache.commons.math.special.Gamma;import org.apache.commons.math.util.MathUtils;/** * Implementation for the {@link PoissonDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class PoissonDistributionImpl extends AbstractIntegerDistribution implements PoissonDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -3349935121172596109L; /** Distribution used to compute normal approximation. */ private NormalDistribution normal; /** * Holds the Poisson mean for the distribution. */ private double mean; /** * Create a new Poisson distribution with the given the mean. * The mean value must be positive; otherwise an * <code>IllegalArgument</code> is thrown. * * @param p the Poisson mean * @throws IllegalArgumentException if p ≤ 0 */ public PoissonDistributionImpl(double p) { this(p, new NormalDistributionImpl()); } /** * Create a new Poisson distribution with the given the mean. * The mean value must be positive; otherwise an * <code>IllegalArgument</code> is thrown. * * @param p the Poisson mean * @param z a normal distribution used to compute normal approximations. * @throws IllegalArgumentException if p ≤ 0 * @since 1.2 */ public PoissonDistributionImpl(double p, NormalDistribution z) { super(); setNormal(z); setMean(p); } /** * Get the Poisson mean for the distribution. * * @return the Poisson mean for the distribution. */ public double getMean() { return this.mean; } /** * Set the Poisson mean for the distribution. * The mean value must be positive; otherwise an * <code>IllegalArgument</code> is thrown. * * @param p the Poisson mean value * @throws IllegalArgumentException if p ≤ 0 */ public void setMean(double p) { if (p <= 0) { throw new IllegalArgumentException( "The Poisson mean must be positive"); } this.mean = p; normal.setMean(p); normal.setStandardDeviation(Math.sqrt(p)); } /** * The probability mass function P(X = x) for a Poisson distribution. * * @param x the value at which the probability density function is evaluated. * @return the value of the probability mass function at x */ public double probability(int x) { if (x < 0 || x == Integer.MAX_VALUE) { return 0; } return Math.pow(getMean(), x) / MathUtils.factorialDouble(x) * Math.exp(-mean); } /** * The probability distribution function P(X <= x) for a Poisson distribution. * * @param x the value at which the PDF is evaluated. * @return Poisson distribution function evaluated at x * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(int x) throws MathException { if (x < 0) { return 0; } if (x == Integer.MAX_VALUE) { return 1; } return Gamma.regularizedGammaQ((double)x + 1, mean, 1E-12, Integer.MAX_VALUE); } /** * Calculates the Poisson distribution function using a normal * approximation. The <code>N(mean, sqrt(mean))</code> * distribution is used to approximate the Poisson distribution. * <p> * The computation uses "half-correction" -- evaluating the normal * distribution function at <code>x + 0.5</code></p> * * @param x the upper bound, inclusive * @return the distribution function value calculated using a normal approximation * @throws MathException if an error occurs computing the normal approximation */ public double normalApproximateProbability(int x) throws MathException { // calculate the probability using half-correction return normal.cumulativeProbability(x + 0.5); } /** * Access the domain value lower bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain lower bound */ protected int getDomainLowerBound(double p) { return 0; } /** * Access the domain value upper bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain upper bound */ protected int getDomainUpperBound(double p) { return Integer.MAX_VALUE; } /** * Modify the normal distribution used to compute normal approximations. * The caller is responsible for insuring the normal distribution has the * proper parameter settings. * @param value the new distribution * @since 1.2 */ public void setNormal(NormalDistribution value) { normal = value; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -