⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstractintegerdistribution.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;/** * Base class for integer-valued discrete distributions.  Default * implementations are provided for some of the methods that do not vary * from distribution to distribution. *   * @version $Revision: 620368 $ $Date: 2008-02-10 18:04:48 -0700 (Sun, 10 Feb 2008) $ */public abstract class AbstractIntegerDistribution extends AbstractDistribution    implements IntegerDistribution, Serializable {            /** Serializable version identifier */    private static final long serialVersionUID = -1146319659338487221L;        /**     * Default constructor.     */    protected AbstractIntegerDistribution() {        super();    }        /**     * For a random variable X whose values are distributed according     * to this distribution, this method returns P(X &le; x).  In other words,     * this method represents the  (cumulative) distribution function, or     * CDF, for this distribution.     * <p>     * If <code>x</code> does not represent an integer value, the CDF is      * evaluated at the greatest integer less than x.     *      * @param x the value at which the distribution function is evaluated.     * @return cumulative probability that a random variable with this     * distribution takes a value less than or equal to <code>x</code>     * @throws MathException if the cumulative probability can not be     * computed due to convergence or other numerical errors.     */    public double cumulativeProbability(double x) throws MathException {        return cumulativeProbability((int) Math.floor(x));      }        /**     * For a random variable X whose values are distributed according     * to this distribution, this method returns P(x0 &le; X &le; x1).     *      * @param x0 the (inclusive) lower bound     * @param x1 the (inclusive) upper bound     * @return the probability that a random variable with this distribution     * will take a value between <code>x0</code> and <code>x1</code>,     * including the endpoints.     * @throws MathException if the cumulative probability can not be     * computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if <code>x0 > x1</code>     */    public double cumulativeProbability(double x0, double x1)        throws MathException {        if (x0 > x1) {            throw new IllegalArgumentException            ("lower endpoint must be less than or equal to upper endpoint");        }        if (Math.floor(x0) < x0) {            return cumulativeProbability(((int) Math.floor(x0)) + 1,               (int) Math.floor(x1)); // don't want to count mass below x0        } else { // x0 is mathematical integer, so use as is            return cumulativeProbability((int) Math.floor(x0),                (int) Math.floor(x1));         }    }        /**     * For a random variable X whose values are distributed according     * to this distribution, this method returns P(X &le; x).  In other words,     * this method represents the probability distribution function, or PDF,     * for this distribution.     *      * @param x the value at which the PDF is evaluated.     * @return PDF for this distribution.      * @throws MathException if the cumulative probability can not be     *            computed due to convergence or other numerical errors.     */    abstract public double cumulativeProbability(int x) throws MathException;        /**     * For a random variable X whose values are distributed according     * to this distribution, this method returns P(X = x). In other words, this     * method represents the probability mass function,  or PMF, for the distribution.     * <p>     * If <code>x</code> does not represent an integer value, 0 is returned.     *      * @param x the value at which the probability density function is evaluated     * @return the value of the probability density function at x     */    public double probability(double x) {        double fl = Math.floor(x);        if (fl == x) {            return this.probability((int) x);        } else {            return 0;        }    }        /**    * For a random variable X whose values are distributed according     * to this distribution, this method returns P(x0 &le; X &le; x1).     *      * @param x0 the inclusive, lower bound     * @param x1 the inclusive, upper bound     * @return the cumulative probability.      * @throws MathException if the cumulative probability can not be     *            computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if x0 > x1     */    public double cumulativeProbability(int x0, int x1) throws MathException {        if (x0 > x1) {            throw new IllegalArgumentException                ("lower endpoint must be less than or equal to upper endpoint");        }        return cumulativeProbability(x1) - cumulativeProbability(x0 - 1);    }        /**     * For a random variable X whose values are distributed according     * to this distribution, this method returns the largest x, such     * that P(X &le; x) &le; <code>p</code>.     *     * @param p the desired probability     * @return the largest x such that P(X &le; x) <= p     * @throws MathException if the inverse cumulative probability can not be     *            computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if p < 0 or p > 1     */    public int inverseCumulativeProbability(final double p) throws MathException{        if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException(                "p must be between 0 and 1.0 (inclusive)");        }                // by default, do simple bisection.        // subclasses can override if there is a better method.        int x0 = getDomainLowerBound(p);        int x1 = getDomainUpperBound(p);        double pm;        while (x0 < x1) {            int xm = x0 + (x1 - x0) / 2;            pm = cumulativeProbability(xm);            if (pm > p) {                // update x1                if (xm == x1) {                    // this can happen with integer division                    // simply decrement x1                    --x1;                } else {                    // update x1 normally                    x1 = xm;                }            } else {                // update x0                if (xm == x0) {                    // this can happen with integer division                    // simply increment x0                    ++x0;                } else {                    // update x0 normally                    x0 = xm;                }            }        }                // insure x0 is the correct critical point        pm = cumulativeProbability(x0);        while (pm > p) {            --x0;            pm = cumulativeProbability(x0);        }            return x0;            }        /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a PDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected abstract int getDomainLowerBound(double p);        /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a PDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected abstract int getDomainUpperBound(double p);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -