⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exponentialdistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;/** * The default implementation of {@link ExponentialDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class ExponentialDistributionImpl extends AbstractContinuousDistribution    implements ExponentialDistribution, Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 2401296428283614780L;        /** The mean of this distribution. */    private double mean;        /**     * Create a exponential distribution with the given mean.     * @param mean mean of this distribution.     */    public ExponentialDistributionImpl(double mean) {        super();        setMean(mean);    }    /**     * Modify the mean.     * @param mean the new mean.     * @throws IllegalArgumentException if <code>mean</code> is not positive.     */    public void setMean(double mean) {        if (mean <= 0.0) {            throw new IllegalArgumentException("mean must be positive.");        }        this.mean = mean;    }    /**     * Access the mean.     * @return the mean.     */    public double getMean() {        return mean;    }    /**     * For this disbution, X, this method returns P(X &lt; x).     *      * The implementation of this method is based on:     * <ul>     * <li>     * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">     * Exponential Distribution</a>, equation (1).</li>     * </ul>     *      * @param x the value at which the CDF is evaluated.     * @return CDF for this distribution.     * @throws MathException if the cumulative probability can not be     *            computed due to convergence or other numerical errors.     */    public double cumulativeProbability(double x) throws MathException{        double ret;        if (x <= 0.0) {            ret = 0.0;        } else {            ret = 1.0 - Math.exp(-x / getMean());        }        return ret;    }        /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     * <p>     * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>     *      * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws MathException if the inverse cumulative probability can not be     *            computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if p < 0 or p > 1.     */    public double inverseCumulativeProbability(double p) throws MathException {        double ret;                if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException                ("probability argument must be between 0 and 1 (inclusive)");        } else if (p == 1.0) {            ret = Double.POSITIVE_INFINITY;        } else {            ret = -getMean() * Math.log(1.0 - p);        }                return ret;    }        /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.        *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>     */    protected double getDomainLowerBound(double p) {        return 0;    }        /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.        *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected double getDomainUpperBound(double p) {        // NOTE: exponential is skewed to the left        // NOTE: therefore, P(X < &mu;) > .5        if (p < .5) {            // use mean            return getMean();        } else {            // use max            return Double.MAX_VALUE;        }    }        /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.        *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected double getInitialDomain(double p) {        // TODO: try to improve on this estimate        // Exponential is skewed to the left, therefore, P(X < &mu;) > .5        if (p < .5) {            // use 1/2 mean            return getMean() * .5;        } else {            // use mean            return getMean();        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -