⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gammadistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;import org.apache.commons.math.special.Gamma;/** * The default implementation of {@link GammaDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class GammaDistributionImpl extends AbstractContinuousDistribution    implements GammaDistribution, Serializable  {    /** Serializable version identifier */    private static final long serialVersionUID = -3239549463135430361L;    /** The shape parameter. */    private double alpha;        /** The scale parameter. */    private double beta;        /**     * Create a new gamma distribution with the given alpha and beta values.     * @param alpha the shape parameter.     * @param beta the scale parameter.     */    public GammaDistributionImpl(double alpha, double beta) {        super();        setAlpha(alpha);        setBeta(beta);    }        /**     * For this disbution, X, this method returns P(X &lt; x).     *      * The implementation of this method is based on:     * <ul>     * <li>     * <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">     * Chi-Squared Distribution</a>, equation (9).</li>     * <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.     * Belmont, CA: Duxbury Press.</li>     * </ul>     *      * @param x the value at which the CDF is evaluated.     * @return CDF for this distribution.      * @throws MathException if the cumulative probability can not be     *            computed due to convergence or other numerical errors.     */    public double cumulativeProbability(double x) throws MathException{        double ret;            if (x <= 0.0) {            ret = 0.0;        } else {            ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta());        }            return ret;    }        /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     * <p>     * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>     *     * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws MathException if the inverse cumulative probability can not be     *         computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public double inverseCumulativeProbability(final double p)     throws MathException {        if (p == 0) {            return 0d;        }        if (p == 1) {            return Double.POSITIVE_INFINITY;        }        return super.inverseCumulativeProbability(p);    }        /**     * Modify the shape parameter, alpha.     * @param alpha the new shape parameter.     * @throws IllegalArgumentException if <code>alpha</code> is not positive.     */    public void setAlpha(double alpha) {        if (alpha <= 0.0) {            throw new IllegalArgumentException("alpha must be positive");        }        this.alpha = alpha;    }        /**     * Access the shape parameter, alpha     * @return alpha.     */    public double getAlpha() {        return alpha;    }        /**     * Modify the scale parameter, beta.     * @param beta the new scale parameter.     * @throws IllegalArgumentException if <code>beta</code> is not positive.     */    public void setBeta(double beta) {        if (beta <= 0.0) {            throw new IllegalArgumentException("beta must be positive");        }        this.beta = beta;    }        /**     * Access the scale parameter, beta     * @return beta.     */    public double getBeta() {        return beta;    }        /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>     */    protected double getDomainLowerBound(double p) {        // TODO: try to improve on this estimate        return Double.MIN_VALUE;    }    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected double getDomainUpperBound(double p) {        // TODO: try to improve on this estimate        // NOTE: gamma is skewed to the left        // NOTE: therefore, P(X < &mu;) > .5        double ret;        if (p < .5) {            // use mean            ret = getAlpha() * getBeta();        } else {            // use max value            ret = Double.MAX_VALUE;        }                return ret;    }    /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected double getInitialDomain(double p) {        // TODO: try to improve on this estimate        // Gamma is skewed to the left, therefore, P(X < &mu;) > .5        double ret;        if (p < .5) {            // use 1/2 mean            ret = getAlpha() * getBeta() * .5;        } else {            // use mean            ret = getAlpha() * getBeta();        }                return ret;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -