📄 gammadistributionimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.MathException;import org.apache.commons.math.special.Gamma;/** * The default implementation of {@link GammaDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class GammaDistributionImpl extends AbstractContinuousDistribution implements GammaDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -3239549463135430361L; /** The shape parameter. */ private double alpha; /** The scale parameter. */ private double beta; /** * Create a new gamma distribution with the given alpha and beta values. * @param alpha the shape parameter. * @param beta the scale parameter. */ public GammaDistributionImpl(double alpha, double beta) { super(); setAlpha(alpha); setBeta(beta); } /** * For this disbution, X, this method returns P(X < x). * * The implementation of this method is based on: * <ul> * <li> * <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html"> * Chi-Squared Distribution</a>, equation (9).</li> * <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>. * Belmont, CA: Duxbury Press.</li> * </ul> * * @param x the value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException{ double ret; if (x <= 0.0) { ret = 0.0; } else { ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta()); } return ret; } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = <code>p</code>. * <p> * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p> * * @param p the desired probability * @return x, such that P(X < x) = <code>p</code> * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if <code>p</code> is not a valid * probability. */ public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Modify the shape parameter, alpha. * @param alpha the new shape parameter. * @throws IllegalArgumentException if <code>alpha</code> is not positive. */ public void setAlpha(double alpha) { if (alpha <= 0.0) { throw new IllegalArgumentException("alpha must be positive"); } this.alpha = alpha; } /** * Access the shape parameter, alpha * @return alpha. */ public double getAlpha() { return alpha; } /** * Modify the scale parameter, beta. * @param beta the new scale parameter. * @throws IllegalArgumentException if <code>beta</code> is not positive. */ public void setBeta(double beta) { if (beta <= 0.0) { throw new IllegalArgumentException("beta must be positive"); } this.beta = beta; } /** * Access the scale parameter, beta * @return beta. */ public double getBeta() { return beta; } /** * Access the domain value lower bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < <i>lower bound</i>) < <code>p</code> */ protected double getDomainLowerBound(double p) { // TODO: try to improve on this estimate return Double.MIN_VALUE; } /** * Access the domain value upper bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < <i>upper bound</i>) > <code>p</code> */ protected double getDomainUpperBound(double p) { // TODO: try to improve on this estimate // NOTE: gamma is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use mean ret = getAlpha() * getBeta(); } else { // use max value ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ protected double getInitialDomain(double p) { // TODO: try to improve on this estimate // Gamma is skewed to the left, therefore, P(X < μ) > .5 double ret; if (p < .5) { // use 1/2 mean ret = getAlpha() * getBeta() * .5; } else { // use mean ret = getAlpha() * getBeta(); } return ret; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -