⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cauchydistributionimpl.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;/** * Default implementation of * {@link org.apache.commons.math.distribution.CauchyDistribution}. * * @since 1.1 * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class CauchyDistributionImpl extends AbstractContinuousDistribution         implements CauchyDistribution, Serializable {        /** Serializable version identifier */    private static final long serialVersionUID = 8589540077390120676L;    /** The median of this distribution. */    private double median = 0;        /** The scale of this distribution. */    private double scale = 1;        /**     * Creates cauchy distribution with the medain equal to zero and scale     * equal to one.      */    public CauchyDistributionImpl(){        this(0.0, 1.0);    }        /**     * Create a cauchy distribution using the given median and scale.     * @param median median for this distribution     * @param s scale parameter for this distribution     */    public CauchyDistributionImpl(double median, double s){        super();        setMedian(median);        setScale(s);    }    /**     * For this disbution, X, this method returns P(X &lt; <code>x</code>).     * @param x the value at which the CDF is evaluated.     * @return CDF evaluted at <code>x</code>.      */    public double cumulativeProbability(double x) {        return 0.5 + (Math.atan((x - median) / scale) / Math.PI);    }        /**     * Access the median.     * @return median for this distribution     */     public double getMedian() {        return median;    }    /**     * Access the scale parameter.     * @return scale parameter for this distribution     */    public double getScale() {        return scale;    }        /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     * <p>     * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and      * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>     *     * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public double inverseCumulativeProbability(double p) {        double ret;        if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException                ("probability argument must be between 0 and 1 (inclusive)");        } else if (p == 0) {            ret = Double.NEGATIVE_INFINITY;        } else  if (p == 1) {            ret = Double.POSITIVE_INFINITY;        } else {            ret = median + scale * Math.tan(Math.PI * (p - .5));        }        return ret;    }        /**     * Modify the median.     * @param median for this distribution     */    public void setMedian(double median) {        this.median = median;    }    /**     * Modify the scale parameter.     * @param s scale parameter for this distribution     * @throws IllegalArgumentException if <code>sd</code> is not positive.     */    public void setScale(double s) {        if (s <= 0.0) {            throw new IllegalArgumentException(                "Scale must be positive.");        }               scale = s;    }        /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected double getDomainLowerBound(double p) {        double ret;        if (p < .5) {            ret = -Double.MAX_VALUE;        } else {            ret = getMedian();        }                return ret;    }    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected double getDomainUpperBound(double p) {        double ret;        if (p < .5) {            ret = getMedian();        } else {            ret = Double.MAX_VALUE;        }                return ret;    }    /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected double getInitialDomain(double p) {        double ret;        if (p < .5) {            ret = getMedian() - getScale();        } else if (p > .5) {            ret = getMedian() + getScale();        } else {            ret = getMedian();        }                return ret;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -