📄 cauchydistributionimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;/** * Default implementation of * {@link org.apache.commons.math.distribution.CauchyDistribution}. * * @since 1.1 * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */public class CauchyDistributionImpl extends AbstractContinuousDistribution implements CauchyDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 8589540077390120676L; /** The median of this distribution. */ private double median = 0; /** The scale of this distribution. */ private double scale = 1; /** * Creates cauchy distribution with the medain equal to zero and scale * equal to one. */ public CauchyDistributionImpl(){ this(0.0, 1.0); } /** * Create a cauchy distribution using the given median and scale. * @param median median for this distribution * @param s scale parameter for this distribution */ public CauchyDistributionImpl(double median, double s){ super(); setMedian(median); setScale(s); } /** * For this disbution, X, this method returns P(X < <code>x</code>). * @param x the value at which the CDF is evaluated. * @return CDF evaluted at <code>x</code>. */ public double cumulativeProbability(double x) { return 0.5 + (Math.atan((x - median) / scale) / Math.PI); } /** * Access the median. * @return median for this distribution */ public double getMedian() { return median; } /** * Access the scale parameter. * @return scale parameter for this distribution */ public double getScale() { return scale; } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = <code>p</code>. * <p> * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and * <code>Double.POSITIVE_INFINITY</code> for p=1.</p> * * @param p the desired probability * @return x, such that P(X < x) = <code>p</code> * @throws IllegalArgumentException if <code>p</code> is not a valid * probability. */ public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException ("probability argument must be between 0 and 1 (inclusive)"); } else if (p == 0) { ret = Double.NEGATIVE_INFINITY; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = median + scale * Math.tan(Math.PI * (p - .5)); } return ret; } /** * Modify the median. * @param median for this distribution */ public void setMedian(double median) { this.median = median; } /** * Modify the scale parameter. * @param s scale parameter for this distribution * @throws IllegalArgumentException if <code>sd</code> is not positive. */ public void setScale(double s) { if (s <= 0.0) { throw new IllegalArgumentException( "Scale must be positive."); } scale = s; } /** * Access the domain value lower bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < <i>lower bound</i>) < <code>p</code> */ protected double getDomainLowerBound(double p) { double ret; if (p < .5) { ret = -Double.MAX_VALUE; } else { ret = getMedian(); } return ret; } /** * Access the domain value upper bound, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < <i>upper bound</i>) > <code>p</code> */ protected double getDomainUpperBound(double p) { double ret; if (p < .5) { ret = getMedian(); } else { ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on <code>p</code>, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ protected double getInitialDomain(double p) { double ret; if (p < .5) { ret = getMedian() - getScale(); } else if (p > .5) { ret = getMedian() + getScale(); } else { ret = getMedian(); } return ret; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -