📄 hypergeometricdistributionimpl.java
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.util.MathUtils;/** * The default implementation of {@link HypergeometricDistribution}. * * @version $Revision: 480440 $ $Date: 2006-11-29 00:14:12 -0700 (Wed, 29 Nov 2006) $ */public class HypergeometricDistributionImpl extends AbstractIntegerDistribution implements HypergeometricDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -436928820673516179L; /** The number of successes in the population. */ private int numberOfSuccesses; /** The population size. */ private int populationSize; /** The sample size. */ private int sampleSize; /** * Construct a new hypergeometric distribution with the given the population * size, the number of successes in the population, and the sample size. * @param populationSize the population size. * @param numberOfSuccesses number of successes in the population. * @param sampleSize the sample size. */ public HypergeometricDistributionImpl(int populationSize, int numberOfSuccesses, int sampleSize) { super(); if (numberOfSuccesses > populationSize) { throw new IllegalArgumentException( "number of successes must be less than or equal to " + "population size"); } if (sampleSize > populationSize) { throw new IllegalArgumentException( "sample size must be less than or equal to population size"); } setPopulationSize(populationSize); setSampleSize(sampleSize); setNumberOfSuccesses(numberOfSuccesses); } /** * For this disbution, X, this method returns P(X ≤ x). * @param x the value at which the PDF is evaluated. * @return PDF for this distribution. */ public double cumulativeProbability(int x) { double ret; int n = getPopulationSize(); int m = getNumberOfSuccesses(); int k = getSampleSize(); int[] domain = getDomain(n, m, k); if (x < domain[0]) { ret = 0.0; } else if(x >= domain[1]) { ret = 1.0; } else { ret = innerCumulativeProbability(domain[0], x, 1, n, m, k); } return ret; } /** * Return the domain for the given hypergeometric distribution parameters. * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return a two element array containing the lower and upper bounds of the * hypergeometric distribution. */ private int[] getDomain(int n, int m, int k){ return new int[]{ getLowerDomain(n, m, k), getUpperDomain(m, k) }; } /** * Access the domain value lower bound, based on <code>p</code>, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < <i>lower bound</i>) < <code>p</code> */ protected int getDomainLowerBound(double p) { return getLowerDomain(getPopulationSize(), getNumberOfSuccesses(), getSampleSize()); } /** * Access the domain value upper bound, based on <code>p</code>, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < <i>upper bound</i>) > <code>p</code> */ protected int getDomainUpperBound(double p) { return getUpperDomain(getSampleSize(), getNumberOfSuccesses()); } /** * Return the lowest domain value for the given hypergeometric distribution * parameters. * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return the lowest domain value of the hypergeometric distribution. */ private int getLowerDomain(int n, int m, int k) { return Math.max(0, m - (n - k)); } /** * Access the number of successes. * @return the number of successes. */ public int getNumberOfSuccesses() { return numberOfSuccesses; } /** * Access the population size. * @return the population size. */ public int getPopulationSize() { return populationSize; } /** * Access the sample size. * @return the sample size. */ public int getSampleSize() { return sampleSize; } /** * Return the highest domain value for the given hypergeometric distribution * parameters. * @param m number of successes in the population. * @param k the sample size. * @return the highest domain value of the hypergeometric distribution. */ private int getUpperDomain(int m, int k){ return Math.min(k, m); } /** * For this disbution, X, this method returns P(X = x). * * @param x the value at which the PMF is evaluated. * @return PMF for this distribution. */ public double probability(int x) { double ret; int n = getPopulationSize(); int m = getNumberOfSuccesses(); int k = getSampleSize(); int[] domain = getDomain(n, m, k); if(x < domain[0] || x > domain[1]){ ret = 0.0; } else { ret = probability(n, m, k, x); } return ret; } /** * For the disbution, X, defined by the given hypergeometric distribution * parameters, this method returns P(X = x). * * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @param x the value at which the PMF is evaluated. * @return PMF for the distribution. */ private double probability(int n, int m, int k, int x) { return Math.exp(MathUtils.binomialCoefficientLog(m, x) + MathUtils.binomialCoefficientLog(n - m, k - x) - MathUtils.binomialCoefficientLog(n, k)); } /** * Modify the number of successes. * @param num the new number of successes. * @throws IllegalArgumentException if <code>num</code> is negative. */ public void setNumberOfSuccesses(int num) { if(num < 0){ throw new IllegalArgumentException( "number of successes must be non-negative."); } numberOfSuccesses = num; } /** * Modify the population size. * @param size the new population size. * @throws IllegalArgumentException if <code>size</code> is not positive. */ public void setPopulationSize(int size) { if(size <= 0){ throw new IllegalArgumentException( "population size must be positive."); } populationSize = size; } /** * Modify the sample size. * @param size the new sample size. * @throws IllegalArgumentException if <code>size</code> is negative. */ public void setSampleSize(int size) { if (size < 0) { throw new IllegalArgumentException( "sample size must be non-negative."); } sampleSize = size; } /** * For this disbution, X, this method returns P(X ≥ x). * @param x the value at which the CDF is evaluated. * @return upper tail CDF for this distribution. * @since 1.1 */ public double upperCumulativeProbability(int x) { double ret; int n = getPopulationSize(); int m = getNumberOfSuccesses(); int k = getSampleSize(); int[] domain = getDomain(n, m, k); if (x < domain[0]) { ret = 1.0; } else if(x > domain[1]) { ret = 0.0; } else { ret = innerCumulativeProbability(domain[1], x, -1, n, m, k); } return ret; } /** * For this disbution, X, this method returns P(x0 ≤ X ≤ x1). This * probability is computed by summing the point probabilities for the values * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx. * @param x0 the inclusive, lower bound * @param x1 the inclusive, upper bound * @param dx the direction of summation. 1 indicates summing from x0 to x1. * 0 indicates summing from x1 to x0. * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return P(x0 ≤ X ≤ x1). */ private double innerCumulativeProbability( int x0, int x1, int dx, int n, int m, int k) { double ret = probability(n, m, k, x0); while (x0 != x1) { x0 += dx; ret += probability(n, m, k, x0); } return ret; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -