⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstractcontinuousdistribution.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.distribution;import java.io.Serializable;import org.apache.commons.math.ConvergenceException;import org.apache.commons.math.FunctionEvaluationException;import org.apache.commons.math.MathException;import org.apache.commons.math.analysis.UnivariateRealFunction;import org.apache.commons.math.analysis.UnivariateRealSolverUtils;/** * Base class for continuous distributions.  Default implementations are * provided for some of the methods that do not vary from distribution to * distribution. *   * @version $Revision: 506600 $ $Date: 2007-02-12 12:35:59 -0700 (Mon, 12 Feb 2007) $ */public abstract class AbstractContinuousDistribution    extends AbstractDistribution    implements ContinuousDistribution, Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = -38038050983108802L;        /**     * Default constructor.     */    protected AbstractContinuousDistribution() {        super();    }    /**     * For this distribution, X, this method returns the critical point x, such     * that P(X &lt; x) = <code>p</code>.     *     * @param p the desired probability     * @return x, such that P(X &lt; x) = <code>p</code>     * @throws MathException if the inverse cumulative probability can not be     *         computed due to convergence or other numerical errors.     * @throws IllegalArgumentException if <code>p</code> is not a valid     *         probability.     */    public double inverseCumulativeProbability(final double p)        throws MathException {        if (p < 0.0 || p > 1.0) {            throw new IllegalArgumentException("p must be between 0.0 and 1.0, inclusive.");        }        // by default, do simple root finding using bracketing and default solver.        // subclasses can overide if there is a better method.        UnivariateRealFunction rootFindingFunction =            new UnivariateRealFunction() {            public double value(double x) throws FunctionEvaluationException {                try {                    return cumulativeProbability(x) - p;                } catch (MathException ex) {                    throw new FunctionEvaluationException(x, ex.getPattern(), ex.getArguments(), ex);                }            }        };                      // Try to bracket root, test domain endoints if this fails             double lowerBound = getDomainLowerBound(p);        double upperBound = getDomainUpperBound(p);        double[] bracket = null;        try {            bracket = UnivariateRealSolverUtils.bracket(                    rootFindingFunction, getInitialDomain(p),                    lowerBound, upperBound);        }  catch (ConvergenceException ex) {            /*              * Check domain endpoints to see if one gives value that is within             * the default solver's defaultAbsoluteAccuracy of 0 (will be the             * case if density has bounded support and p is 0 or 1).             *              * TODO: expose the default solver, defaultAbsoluteAccuracy as             * a constant.             */             if (Math.abs(rootFindingFunction.value(lowerBound)) < 1E-6) {                return lowerBound;            }            if (Math.abs(rootFindingFunction.value(upperBound)) < 1E-6) {                return upperBound;            }                 // Failed bracket convergence was not because of corner solution            throw new MathException(ex);        }        // find root        double root = UnivariateRealSolverUtils.solve(rootFindingFunction,                bracket[0],bracket[1]);        return root;    }    /**     * Access the initial domain value, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return initial domain value     */    protected abstract double getInitialDomain(double p);    /**     * Access the domain value lower bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value lower bound, i.e.     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>      */    protected abstract double getDomainLowerBound(double p);    /**     * Access the domain value upper bound, based on <code>p</code>, used to     * bracket a CDF root.  This method is used by     * {@link #inverseCumulativeProbability(double)} to find critical values.     *      * @param p the desired probability for the critical value     * @return domain value upper bound, i.e.     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>      */    protected abstract double getDomainUpperBound(double p);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -