📄 levenbergmarquardtestimator.java
字号:
for (double ratio = 0; ratio < 1.0e-4;) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = parameters[pj].getEstimate(); } double previousCost = cost; double[] tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter determineLMParameter(oldRes, delta, diag, work1, work2, work3); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; parameters[pj].setEstimate(oldX[pj] + lmDir[pj]); double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = Math.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = Math.min(delta, lmNorm); } // evaluate the function at x + p and calculate its norm updateResidualsAndCost(); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * cost < previousCost) { double r = cost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; for (int i = 0, index = pj; i <= j; ++i, index += cols) { work1[i] += jacobian[index] * dirJ; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 = coeff1 / pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * Math.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < cols; ++k) { double xK = diag[k] * parameters[k].getEstimate(); xNorm += xK * xK; } xNorm = Math.sqrt(xNorm); } else { // failed iteration, reset the previous values cost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; parameters[pj].setEstimate(oldX[pj]); } tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; } // tests for convergence. if (((Math.abs(actRed) <= costRelativeTolerance) && (preRed <= costRelativeTolerance) && (ratio <= 2.0)) || (delta <= parRelativeTolerance * xNorm)) { return; } // tests for termination and stringent tolerances // (2.2204e-16 is the machine epsilon for IEEE754) if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { throw new EstimationException("cost relative tolerance is too small ({0})," + " no further reduction in the" + " sum of squares is possible", new Object[] { new Double(costRelativeTolerance) }); } else if (delta <= 2.2204e-16 * xNorm) { throw new EstimationException("parameters relative tolerance is too small" + " ({0}), no further improvement in" + " the approximate solution is possible", new Object[] { new Double(parRelativeTolerance) }); } else if (maxCosine <= 2.2204e-16) { throw new EstimationException("orthogonality tolerance is too small ({0})," + " solution is orthogonal to the jacobian", new Object[] { new Double(orthoTolerance) }); } } } } /** * Determine the Levenberg-Marquardt parameter. * <p>This implementation is a translation in Java of the MINPACK * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a> * routine.</p> * <p>This method sets the lmPar and lmDir attributes.</p> * <p>The authors of the original fortran function are:</p> * <ul> * <li>Argonne National Laboratory. MINPACK project. March 1980</li> * <li>Burton S. Garbow</li> * <li>Kenneth E. Hillstrom</li> * <li>Jorge J. More</li> * </ul> * <p>Luc Maisonobe did the Java translation.</p> * * @param qy array containing qTy * @param delta upper bound on the euclidean norm of diagR * lmDir * @param diag diagonal matrix * @param work1 work array * @param work2 work array * @param work3 work array */ private void determineLMParameter(double[] qy, double delta, double[] diag, double[] work1, double[] work2, double[] work3) { // compute and store in x the gauss-newton direction, if the // jacobian is rank-deficient, obtain a least squares solution for (int j = 0; j < rank; ++j) { lmDir[permutation[j]] = qy[j]; } for (int j = rank; j < cols; ++j) { lmDir[permutation[j]] = 0; } for (int k = rank - 1; k >= 0; --k) { int pk = permutation[k]; double ypk = lmDir[pk] / diagR[pk]; for (int i = 0, index = pk; i < k; ++i, index += cols) { lmDir[permutation[i]] -= ypk * jacobian[index]; } lmDir[pk] = ypk; } // evaluate the function at the origin, and test // for acceptance of the Gauss-Newton direction double dxNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = diag[pj] * lmDir[pj]; work1[pj] = s; dxNorm += s * s; } dxNorm = Math.sqrt(dxNorm); double fp = dxNorm - delta; if (fp <= 0.1 * delta) { lmPar = 0; return; } // if the jacobian is not rank deficient, the Newton step provides // a lower bound, parl, for the zero of the function, // otherwise set this bound to zero double sum2, parl = 0; if (rank == solvedCols) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] *= diag[pj] / dxNorm; } sum2 = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double sum = 0; for (int i = 0, index = pj; i < j; ++i, index += cols) { sum += jacobian[index] * work1[permutation[i]]; } double s = (work1[pj] - sum) / diagR[pj]; work1[pj] = s; sum2 += s * s; } parl = fp / (delta * sum2); } // calculate an upper bound, paru, for the zero of the function sum2 = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double sum = 0; for (int i = 0, index = pj; i <= j; ++i, index += cols) { sum += jacobian[index] * qy[i]; } sum /= diag[pj]; sum2 += sum * sum; } double gNorm = Math.sqrt(sum2); double paru = gNorm / delta; if (paru == 0) { // 2.2251e-308 is the smallest positive real for IEE754 paru = 2.2251e-308 / Math.min(delta, 0.1); } // if the input par lies outside of the interval (parl,paru), // set par to the closer endpoint lmPar = Math.min(paru, Math.max(lmPar, parl)); if (lmPar == 0) { lmPar = gNorm / dxNorm; } for (int countdown = 10; countdown >= 0; --countdown) { // evaluate the function at the current value of lmPar if (lmPar == 0) { lmPar = Math.max(2.2251e-308, 0.001 * paru); } double sPar = Math.sqrt(lmPar); for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] = sPar * diag[pj]; } determineLMDirection(qy, work1, work2, work3); dxNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = diag[pj] * lmDir[pj]; work3[pj] = s; dxNorm += s * s; } dxNorm = Math.sqrt(dxNorm); double previousFP = fp; fp = dxNorm - delta; // if the function is small enough, accept the current value // of lmPar, also test for the exceptional cases where parl is zero if ((Math.abs(fp) <= 0.1 * delta) || ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) { return; } // compute the Newton correction for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] = work3[pj] * diag[pj] / dxNorm; } for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] /= work2[j]; double tmp = work1[pj]; for (int i = j + 1; i < solvedCols; ++i) { work1[permutation[i]] -= jacobian[i * cols + pj] * tmp; } } sum2 = 0; for (int j = 0; j < solvedCols; ++j) { double s = work1[permutation[j]]; sum2 += s * s; } double correction = fp / (delta * sum2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -