⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussnewtonestimator.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.estimation;import java.io.Serializable;import org.apache.commons.math.linear.InvalidMatrixException;import org.apache.commons.math.linear.RealMatrix;import org.apache.commons.math.linear.RealMatrixImpl;/**  * This class implements a solver for estimation problems. * * <p>This class solves estimation problems using a weighted least * squares criterion on the measurement residuals. It uses a * Gauss-Newton algorithm.</p> * * @version $Revision: 627987 $ $Date: 2008-02-15 03:01:26 -0700 (Fri, 15 Feb 2008) $ * @since 1.2 * */public class GaussNewtonEstimator extends AbstractEstimator implements Serializable {    /**      * Simple constructor.     *     * <p>This constructor builds an estimator and stores its convergence     * characteristics.</p>     *     * <p>An estimator is considered to have converged whenever either     * the criterion goes below a physical threshold under which     * improvements are considered useless or when the algorithm is     * unable to improve it (even if it is still high). The first     * condition that is met stops the iterations.</p>     *     * <p>The fact an estimator has converged does not mean that the     * model accurately fits the measurements. It only means no better     * solution can be found, it does not mean this one is good. Such an     * analysis is left to the caller.</p>     *     * <p>If neither conditions are fulfilled before a given number of     * iterations, the algorithm is considered to have failed and an     * {@link EstimationException} is thrown.</p>     *     * @param maxCostEval maximal number of cost evaluations allowed     * @param convergence criterion threshold below which we do not need     * to improve the criterion anymore     * @param steadyStateThreshold steady state detection threshold, the     * problem has converged has reached a steady state if     * <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where     * <code>Jn</code> and <code>Jn-1</code> are the current and     * preceding criterion value (square sum of the weighted residuals     * of considered measurements).     */    public GaussNewtonEstimator(int maxCostEval,            double convergence,            double steadyStateThreshold) {        setMaxCostEval(maxCostEval);        this.steadyStateThreshold = steadyStateThreshold;        this.convergence          = convergence;    }    /**      * Solve an estimation problem using a least squares criterion.     *     * <p>This method set the unbound parameters of the given problem     * starting from their current values through several iterations. At     * each step, the unbound parameters are changed in order to     * minimize a weighted least square criterion based on the     * measurements of the problem.</p>     *     * <p>The iterations are stopped either when the criterion goes     * below a physical threshold under which improvement are considered     * useless or when the algorithm is unable to improve it (even if it     * is still high). The first condition that is met stops the     * iterations. If the convergence it nos reached before the maximum     * number of iterations, an {@link EstimationException} is     * thrown.</p>     *     * @param problem estimation problem to solve     * @exception EstimationException if the problem cannot be solved     *     * @see EstimationProblem     *     */    public void estimate(EstimationProblem problem)    throws EstimationException {        initializeEstimate(problem);        // work matrices        double[] grad             = new double[parameters.length];        RealMatrixImpl bDecrement = new RealMatrixImpl(parameters.length, 1);        double[][] bDecrementData = bDecrement.getDataRef();        RealMatrixImpl wGradGradT = new RealMatrixImpl(parameters.length, parameters.length);        double[][] wggData        = wGradGradT.getDataRef();        // iterate until convergence is reached        double previous = Double.POSITIVE_INFINITY;        do {            // build the linear problem            incrementJacobianEvaluationsCounter();            RealMatrix b = new RealMatrixImpl(parameters.length, 1);            RealMatrix a = new RealMatrixImpl(parameters.length, parameters.length);            for (int i = 0; i < measurements.length; ++i) {                if (! measurements [i].isIgnored()) {                    double weight   = measurements[i].getWeight();                    double residual = measurements[i].getResidual();                    // compute the normal equation                    for (int j = 0; j < parameters.length; ++j) {                        grad[j] = measurements[i].getPartial(parameters[j]);                        bDecrementData[j][0] = weight * residual * grad[j];                    }                    // build the contribution matrix for measurement i                    for (int k = 0; k < parameters.length; ++k) {                        double[] wggRow = wggData[k];                        double gk = grad[k];                        for (int l = 0; l < parameters.length; ++l) {                            wggRow[l] =  weight * gk * grad[l];                        }                    }                    // update the matrices                    a = a.add(wGradGradT);                    b = b.add(bDecrement);                }            }            try {                // solve the linearized least squares problem                RealMatrix dX = a.solve(b);                // update the estimated parameters                for (int i = 0; i < parameters.length; ++i) {                    parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i, 0));                }            } catch(InvalidMatrixException e) {                throw new EstimationException("unable to solve: singular problem", new Object[0]);            }            previous = cost;            updateResidualsAndCost();        } while ((getCostEvaluations() < 2) ||                 (Math.abs(previous - cost) > (cost * steadyStateThreshold) &&                  (Math.abs(cost) > convergence)));    }    /** Threshold for cost steady state detection. */    private double steadyStateThreshold;    /** Threshold for cost convergence. */    private double convergence;    /** Serializable version identifier */     private static final long serialVersionUID = 5485001826076289109L;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -