⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomialfunctionnewtonform.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.analysis;import java.io.Serializable;import org.apache.commons.math.FunctionEvaluationException;/** * Implements the representation of a real polynomial function in * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>, * ISBN 0070124477, chapter 2. * <p> * The formula of polynomial in Newton form is *     p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + *            a[n](x-c[0])(x-c[1])...(x-c[n-1]) * Note that the length of a[] is one more than the length of c[]</p> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class PolynomialFunctionNewtonForm implements UnivariateRealFunction,    Serializable {    /** serializable version identifier */    static final long serialVersionUID = -3353896576191389897L;    /**     * The coefficients of the polynomial, ordered by degree -- i.e.     * coefficients[0] is the constant term and coefficients[n] is the      * coefficient of x^n where n is the degree of the polynomial.     */    private double coefficients[];    /**     * Members of c[] are called centers of the Newton polynomial.     * When all c[i] = 0, a[] becomes normal polynomial coefficients,     * i.e. a[i] = coefficients[i].     */    private double a[], c[];    /**     * Whether the polynomial coefficients are available.     */    private boolean coefficientsComputed;    /**     * Construct a Newton polynomial with the given a[] and c[]. The order of     * centers are important in that if c[] shuffle, then values of a[] would     * completely change, not just a permutation of old a[].     * <p>     * The constructor makes copy of the input arrays and assigns them.</p>     *      * @param a the coefficients in Newton form formula     * @param c the centers     * @throws IllegalArgumentException if input arrays are not valid     */    PolynomialFunctionNewtonForm(double a[], double c[]) throws        IllegalArgumentException {        verifyInputArray(a, c);        this.a = new double[a.length];        this.c = new double[c.length];        System.arraycopy(a, 0, this.a, 0, a.length);        System.arraycopy(c, 0, this.c, 0, c.length);        coefficientsComputed = false;    }    /**     * Calculate the function value at the given point.     *     * @param z the point at which the function value is to be computed     * @return the function value     * @throws FunctionEvaluationException if a runtime error occurs     * @see UnivariateRealFunction#value(double)     */    public double value(double z) throws FunctionEvaluationException {       return evaluate(a, c, z);    }    /**     * Returns the degree of the polynomial.     *      * @return the degree of the polynomial     */    public int degree() {        return c.length;    }    /**     * Returns a copy of coefficients in Newton form formula.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of coefficients in Newton form formula     */    public double[] getNewtonCoefficients() {        double[] out = new double[a.length];        System.arraycopy(a, 0, out, 0, a.length);        return out;    }    /**     * Returns a copy of the centers array.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of the centers array     */    public double[] getCenters() {        double[] out = new double[c.length];        System.arraycopy(c, 0, out, 0, c.length);        return out;    }    /**     * Returns a copy of the coefficients array.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of the coefficients array     */    public double[] getCoefficients() {        if (!coefficientsComputed) {            computeCoefficients();        }        double[] out = new double[coefficients.length];        System.arraycopy(coefficients, 0, out, 0, coefficients.length);        return out;    }    /**     * Evaluate the Newton polynomial using nested multiplication. It is     * also called <a href="http://mathworld.wolfram.com/HornersRule.html">     * Horner's Rule</a> and takes O(N) time.     *     * @param a the coefficients in Newton form formula     * @param c the centers     * @param z the point at which the function value is to be computed     * @return the function value     * @throws FunctionEvaluationException if a runtime error occurs     * @throws IllegalArgumentException if inputs are not valid     */    public static double evaluate(double a[], double c[], double z) throws        FunctionEvaluationException, IllegalArgumentException {        verifyInputArray(a, c);        int n = c.length;        double value = a[n];        for (int i = n-1; i >= 0; i--) {            value = a[i] + (z - c[i]) * value;        }        return value;    }    /**     * Calculate the normal polynomial coefficients given the Newton form.     * It also uses nested multiplication but takes O(N^2) time.     */    protected void computeCoefficients() {        int i, j, n = degree();        coefficients = new double[n+1];        for (i = 0; i <= n; i++) {            coefficients[i] = 0.0;        }        coefficients[0] = a[n];        for (i = n-1; i >= 0; i--) {            for (j = n-i; j > 0; j--) {                coefficients[j] = coefficients[j-1] - c[i] * coefficients[j];            }            coefficients[0] = a[i] - c[i] * coefficients[0];        }        coefficientsComputed = true;    }    /**     * Verifies that the input arrays are valid.     * <p>     * The centers must be distinct for interpolation purposes, but not     * for general use. Thus it is not verified here.</p>     *      * @param a the coefficients in Newton form formula     * @param c the centers     * @throws IllegalArgumentException if not valid     * @see DividedDifferenceInterpolator#computeDividedDifference(double[],     * double[])     */    protected static void verifyInputArray(double a[], double c[]) throws        IllegalArgumentException {        if (a.length < 1 || c.length < 1) {            throw new IllegalArgumentException                ("Input arrays must not be empty.");        }        if (a.length != c.length + 1) {            throw new IllegalArgumentException                ("Bad input array sizes, should have difference 1.");        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -