⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomialfunctionlagrangeform.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.analysis;import java.io.Serializable;import org.apache.commons.math.DuplicateSampleAbscissaException;import org.apache.commons.math.FunctionEvaluationException;/** * Implements the representation of a real polynomial function in * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html"> * Lagrange Form</a>. For reference, see <b>Introduction to Numerical * Analysis</b>, ISBN 038795452X, chapter 2. * <p> * The approximated function should be smooth enough for Lagrange polynomial * to work well. Otherwise, consider using splines instead.</p> * * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */public class PolynomialFunctionLagrangeForm implements UnivariateRealFunction,    Serializable {    /** serializable version identifier */    static final long serialVersionUID = -3965199246151093920L;    /**     * The coefficients of the polynomial, ordered by degree -- i.e.     * coefficients[0] is the constant term and coefficients[n] is the      * coefficient of x^n where n is the degree of the polynomial.     */    private double coefficients[];    /**     * Interpolating points (abscissas) and the function values at these points.     */    private double x[], y[];    /**     * Whether the polynomial coefficients are available.     */    private boolean coefficientsComputed;    /**     * Construct a Lagrange polynomial with the given abscissas and function     * values. The order of interpolating points are not important.     * <p>     * The constructor makes copy of the input arrays and assigns them.</p>     *      * @param x interpolating points     * @param y function values at interpolating points     * @throws IllegalArgumentException if input arrays are not valid     */    PolynomialFunctionLagrangeForm(double x[], double y[]) throws        IllegalArgumentException {        verifyInterpolationArray(x, y);        this.x = new double[x.length];        this.y = new double[y.length];        System.arraycopy(x, 0, this.x, 0, x.length);        System.arraycopy(y, 0, this.y, 0, y.length);        coefficientsComputed = false;    }    /**     * Calculate the function value at the given point.     *     * @param z the point at which the function value is to be computed     * @return the function value     * @throws FunctionEvaluationException if a runtime error occurs     * @see UnivariateRealFunction#value(double)     */    public double value(double z) throws FunctionEvaluationException {        try {            return evaluate(x, y, z);        } catch (DuplicateSampleAbscissaException e) {            throw new FunctionEvaluationException(z, e.getPattern(), e.getArguments(), e);        }    }    /**     * Returns the degree of the polynomial.     *      * @return the degree of the polynomial     */    public int degree() {        return x.length - 1;    }    /**     * Returns a copy of the interpolating points array.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of the interpolating points array     */    public double[] getInterpolatingPoints() {        double[] out = new double[x.length];        System.arraycopy(x, 0, out, 0, x.length);        return out;    }    /**     * Returns a copy of the interpolating values array.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of the interpolating values array     */    public double[] getInterpolatingValues() {        double[] out = new double[y.length];        System.arraycopy(y, 0, out, 0, y.length);        return out;    }    /**     * Returns a copy of the coefficients array.     * <p>     * Changes made to the returned copy will not affect the polynomial.</p>     *      * @return a fresh copy of the coefficients array     */    public double[] getCoefficients() {        if (!coefficientsComputed) {            computeCoefficients();        }        double[] out = new double[coefficients.length];        System.arraycopy(coefficients, 0, out, 0, coefficients.length);        return out;    }    /**     * Evaluate the Lagrange polynomial using      * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">     * Neville's Algorithm</a>. It takes O(N^2) time.     * <p>     * This function is made public static so that users can call it directly     * without instantiating PolynomialFunctionLagrangeForm object.</p>     *     * @param x the interpolating points array     * @param y the interpolating values array     * @param z the point at which the function value is to be computed     * @return the function value     * @throws DuplicateSampleAbscissaException if the sample has duplicate abscissas     * @throws IllegalArgumentException if inputs are not valid     */    public static double evaluate(double x[], double y[], double z) throws        DuplicateSampleAbscissaException, IllegalArgumentException {        int i, j, n, nearest = 0;        double value, c[], d[], tc, td, divider, w, dist, min_dist;        verifyInterpolationArray(x, y);        n = x.length;        c = new double[n];        d = new double[n];        min_dist = Double.POSITIVE_INFINITY;        for (i = 0; i < n; i++) {            // initialize the difference arrays            c[i] = y[i];            d[i] = y[i];            // find out the abscissa closest to z            dist = Math.abs(z - x[i]);            if (dist < min_dist) {                nearest = i;                min_dist = dist;            }        }        // initial approximation to the function value at z        value = y[nearest];        for (i = 1; i < n; i++) {            for (j = 0; j < n-i; j++) {                tc = x[j] - z;                td = x[i+j] - z;                divider = x[j] - x[i+j];                if (divider == 0.0) {                    // This happens only when two abscissas are identical.                    throw new DuplicateSampleAbscissaException(x[i], i, i+j);                }                // update the difference arrays                w = (c[j+1] - d[j]) / divider;                c[j] = tc * w;                d[j] = td * w;            }            // sum up the difference terms to get the final value            if (nearest < 0.5*(n-i+1)) {                value += c[nearest];    // fork down            } else {                nearest--;                value += d[nearest];    // fork up            }        }        return value;    }    /**     * Calculate the coefficients of Lagrange polynomial from the     * interpolation data. It takes O(N^2) time.     * <p>     * Note this computation can be ill-conditioned. Use with caution     * and only when it is necessary.</p>     *     * @throws ArithmeticException if any abscissas coincide     */    protected void computeCoefficients() throws ArithmeticException {        int i, j, n;        double c[], tc[], d, t;        n = degree() + 1;        coefficients = new double[n];        for (i = 0; i < n; i++) {            coefficients[i] = 0.0;        }        // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])        c = new double[n+1];        c[0] = 1.0;        for (i = 0; i < n; i++) {            for (j = i; j > 0; j--) {                c[j] = c[j-1] - c[j] * x[i];            }            c[0] *= (-x[i]);            c[i+1] = 1;        }        tc = new double[n];        for (i = 0; i < n; i++) {            // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])            d = 1;            for (j = 0; j < n; j++) {                if (i != j) {                    d *= (x[i] - x[j]);                }            }            if (d == 0.0) {                // This happens only when two abscissas are identical.                throw new ArithmeticException                    ("Identical abscissas cause division by zero.");            }            t = y[i] / d;            // Lagrange polynomial is the sum of n terms, each of which is a            // polynomial of degree n-1. tc[] are the coefficients of the i-th            // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).            tc[n-1] = c[n];     // actually c[n] = 1            coefficients[n-1] += t * tc[n-1];            for (j = n-2; j >= 0; j--) {                tc[j] = c[j+1] + tc[j+1] * x[i];                coefficients[j] += t * tc[j];            }        }        coefficientsComputed = true;    }    /**     * Verifies that the interpolation arrays are valid.     * <p>     * The interpolating points must be distinct. However it is not     * verified here, it is checked in evaluate() and computeCoefficients().</p>     *      * @param x the interpolating points array     * @param y the interpolating values array     * @throws IllegalArgumentException if not valid     * @see #evaluate(double[], double[], double)     * @see #computeCoefficients()     */    protected static void verifyInterpolationArray(double x[], double y[]) throws        IllegalArgumentException {        if (x.length < 2 || y.length < 2) {            throw new IllegalArgumentException                ("Interpolation requires at least two points.");        }        if (x.length != y.length) {            throw new IllegalArgumentException                ("Abscissa and value arrays must have the same length.");        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -