⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 univariaterealsolverutils.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.analysis;import org.apache.commons.math.FunctionEvaluationException;import org.apache.commons.math.ConvergenceException;/** * Utility routines for {@link UnivariateRealSolver} objects. *  * @version $Revision: 615734 $ $Date: 2008-01-27 23:10:03 -0700 (Sun, 27 Jan 2008) $ */public class UnivariateRealSolverUtils {    /**     * Default constructor.     */    private UnivariateRealSolverUtils() {        super();    }        /** Cached solver factory */    private static UnivariateRealSolverFactory factory = null;    /**     * Convenience method to find a zero of a univariate real function.  A default     * solver is used.      *      * @param f the function.     * @param x0 the lower bound for the interval.     * @param x1 the upper bound for the interval.     * @return a value where the function is zero.     * @throws ConvergenceException if the iteration count was exceeded     * @throws FunctionEvaluationException if an error occurs evaluating     * the function     * @throws IllegalArgumentException if f is null or the endpoints do not     * specify a valid interval     */    public static double solve(UnivariateRealFunction f, double x0, double x1)    throws ConvergenceException, FunctionEvaluationException {        setup(f);        return factory.newDefaultSolver(f).solve(x0, x1);    }    /**     * Convenience method to find a zero of a univariate real function.  A default     * solver is used.      *      * @param f the function     * @param x0 the lower bound for the interval     * @param x1 the upper bound for the interval     * @param absoluteAccuracy the accuracy to be used by the solver     * @return a value where the function is zero     * @throws ConvergenceException if the iteration count is exceeded     * @throws FunctionEvaluationException if an error occurs evaluating the     * function     * @throws IllegalArgumentException if f is null, the endpoints do not      * specify a valid interval, or the absoluteAccuracy is not valid for the     * default solver     */    public static double solve(UnivariateRealFunction f, double x0, double x1,            double absoluteAccuracy) throws ConvergenceException,             FunctionEvaluationException {                   setup(f);        UnivariateRealSolver solver = factory.newDefaultSolver(f);        solver.setAbsoluteAccuracy(absoluteAccuracy);        return solver.solve(x0, x1);    }    /**     * This method attempts to find two values a and b satisfying <ul>    * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>     * <li> <code> f(a) * f(b) < 0 </code></li>     * </ul>     * If f is continuous on <code>[a,b],</code> this means that <code>a</code>     * and <code>b</code> bracket a root of f.     * <p>     * The algorithm starts by setting      * <code>a := initial -1; b := initial +1,</code> examines the value of the     * function at <code>a</code> and <code>b</code> and keeps moving     * the endpoints out by one unit each time through a loop that terminates      * when one of the following happens: <ul>     * <li> <code> f(a) * f(b) < 0 </code> --  success!</li>     * <li> <code> a = lower </code> and <code> b = upper</code>      * -- ConvergenceException </li>     * <li> <code> Integer.MAX_VALUE</code> iterations elapse      * -- ConvergenceException </li>     * </ul></p>     * <p>     * <strong>Note: </strong> this method can take      * <code>Integer.MAX_VALUE</code> iterations to throw a      * <code>ConvergenceException.</code>  Unless you are confident that there     * is a root between <code>lowerBound</code> and <code>upperBound</code>     * near <code>initial,</code> it is better to use      * {@link #bracket(UnivariateRealFunction, double, double, double, int)},      * explicitly specifying the maximum number of iterations.</p>     *     * @param function the function     * @param initial initial midpoint of interval being expanded to     * bracket a root     * @param lowerBound lower bound (a is never lower than this value)     * @param upperBound upper bound (b never is greater than this     * value)     * @return a two element array holding {a, b}     * @throws ConvergenceException if a root can not be bracketted     * @throws FunctionEvaluationException if an error occurs evaluating the     * function     * @throws IllegalArgumentException if function is null, maximumIterations     * is not positive, or initial is not between lowerBound and upperBound     */    public static double[] bracket(UnivariateRealFunction function,             double initial, double lowerBound, double upperBound)     throws ConvergenceException, FunctionEvaluationException {        return bracket( function, initial, lowerBound, upperBound,            Integer.MAX_VALUE ) ;    }     /**     * This method attempts to find two values a and b satisfying <ul>     * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>     * <li> <code> f(a) * f(b) < 0 </code> </li>     * </ul>     * If f is continuous on <code>[a,b],</code> this means that <code>a</code>     * and <code>b</code> bracket a root of f.     * <p>     * The algorithm starts by setting      * <code>a := initial -1; b := initial +1,</code> examines the value of the     * function at <code>a</code> and <code>b</code> and keeps moving     * the endpoints out by one unit each time through a loop that terminates      * when one of the following happens: <ul>     * <li> <code> f(a) * f(b) < 0 </code> --  success!</li>     * <li> <code> a = lower </code> and <code> b = upper</code>      * -- ConvergenceException </li>     * <li> <code> maximumIterations</code> iterations elapse      * -- ConvergenceException </li></ul></p>     *      * @param function the function     * @param initial initial midpoint of interval being expanded to     * bracket a root     * @param lowerBound lower bound (a is never lower than this value)     * @param upperBound upper bound (b never is greater than this     * value)     * @param maximumIterations maximum number of iterations to perform     * @return a two element array holding {a, b}.     * @throws ConvergenceException if the algorithm fails to find a and b     * satisfying the desired conditions     * @throws FunctionEvaluationException if an error occurs evaluating the      * function     * @throws IllegalArgumentException if function is null, maximumIterations     * is not positive, or initial is not between lowerBound and upperBound     */    public static double[] bracket(UnivariateRealFunction function,            double initial, double lowerBound, double upperBound,             int maximumIterations) throws ConvergenceException,             FunctionEvaluationException {                if (function == null) {            throw new IllegalArgumentException ("function is null.");        }        if (maximumIterations <= 0)  {            throw new IllegalArgumentException            ("bad value for maximumIterations: " + maximumIterations);        }        if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) {            throw new IllegalArgumentException            ("Invalid endpoint parameters:  lowerBound=" + lowerBound +               " initial=" + initial + " upperBound=" + upperBound);        }        double a = initial;        double b = initial;        double fa;        double fb;        int numIterations = 0 ;            do {            a = Math.max(a - 1.0, lowerBound);            b = Math.min(b + 1.0, upperBound);            fa = function.value(a);                        fb = function.value(b);            numIterations++ ;        } while ((fa * fb > 0.0) && (numIterations < maximumIterations) &&                 ((a > lowerBound) || (b < upperBound)));           if (fa * fb >= 0.0 ) {            throw new ConvergenceException            ("Number of iterations={0}, maximum iterations={1}, initial={2}, lower bound={3}, upper bound={4}, final a value={5}, final b value={6}, f(a)={7}, f(b)={8}",             new Object[] { new Integer(numIterations), new Integer(maximumIterations),                            new Double(initial), new Double(lowerBound), new Double(upperBound),                            new Double(a), new Double(b), new Double(fa), new Double(fb) });        }                return new double[]{a, b};    }    /**     * Compute the midpoint of two values.     *      * @param a first value.     * @param b second value.     * @return the midpoint.      */    public static double midpoint(double a, double b) {        return (a + b) * .5;    }        /**     * Checks to see if f is null, throwing IllegalArgumentException if so.     * Also initializes factory if factory is null.     *      * @param f  input function     * @throws IllegalArgumentException if f is null     */    private static void setup(UnivariateRealFunction f) {               if (f == null) {            throw new IllegalArgumentException("function can not be null.");            }                if (factory == null) {            factory = UnivariateRealSolverFactory.newInstance();        }           }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -