⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomialsplinefunction.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.analysis;import java.io.Serializable;import java.util.Arrays;import org.apache.commons.math.ArgumentOutsideDomainException;/** * Represents a polynomial spline function. * <p> * A <strong>polynomial spline function</strong> consists of a set of  * <i>interpolating polynomials</i> and an ascending array of domain  * <i>knot points</i>, determining the intervals over which the spline function * is defined by the constituent polynomials.  The polynomials are assumed to * have been computed to match the values of another function at the knot * points.  The value consistency constraints are not currently enforced by  * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among * the polynomials and knot points passed to the constructor.</p> * <p> * N.B.:  The polynomials in the <code>polynomials</code> property must be * centered on the knot points to compute the spline function values.   * See below.</p> * <p> * The domain of the polynomial spline function is  * <code>[smallest knot, largest knot]</code>.  Attempts to evaluate the * function at values outside of this range generate IllegalArgumentExceptions. * </p> * <p> * The value of the polynomial spline function for an argument <code>x</code> * is computed as follows: * <ol> * <li>The knot array is searched to find the segment to which <code>x</code> * belongs.  If <code>x</code> is less than the smallest knot point or greater * than the largest one, an <code>IllegalArgumentException</code> * is thrown.</li> * <li> Let <code>j</code> be the index of the largest knot point that is less * than or equal to <code>x</code>.  The value returned is <br> * <code>polynomials[j](x - knot[j])</code></li></ol></p> * * @version $Revision: 615734 $ $Date: 2008-01-27 23:10:03 -0700 (Sun, 27 Jan 2008) $ */public class PolynomialSplineFunction     implements DifferentiableUnivariateRealFunction, Serializable {    /** Serializable version identifier */    private static final long serialVersionUID = 1619940313389547244L;    /** Spline segment interval delimiters (knots).   Size is n+1 for n segments. */    private double knots[];    /**     * The polynomial functions that make up the spline.  The first element     * determines the value of the spline over the first subinterval, the     * second over the second, etc.   Spline function values are determined by     * evaluating these functions at <code>(x - knot[i])</code> where i is the     * knot segment to which x belongs.     */    private PolynomialFunction polynomials[] = null;        /**      * Number of spline segments = number of polynomials     *  = number of partition points - 1      */    private int n = 0;        /**     * Construct a polynomial spline function with the given segment delimiters     * and interpolating polynomials.     * <p>     * The constructor copies both arrays and assigns the copies to the knots     * and polynomials properties, respectively.</p>     *      * @param knots spline segment interval delimiters     * @param polynomials polynomial functions that make up the spline     * @throws NullPointerException if either of the input arrays is null     * @throws IllegalArgumentException if knots has length less than 2,       * <code>polynomials.length != knots.length - 1 </code>, or the knots array     * is not strictly increasing.     *      */    public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[]) {        if (knots.length < 2) {            throw new IllegalArgumentException                ("Not enough knot values -- spline partition must have at least 2 points.");        }        if (knots.length - 1 != polynomials.length) {            throw new IllegalArgumentException             ("Number of polynomial interpolants must match the number of segments.");        }        if (!isStrictlyIncreasing(knots)) {            throw new IllegalArgumentException                 ("Knot values must be strictly increasing.");        }                this.n = knots.length -1;        this.knots = new double[n + 1];        System.arraycopy(knots, 0, this.knots, 0, n + 1);        this.polynomials = new PolynomialFunction[n];        System.arraycopy(polynomials, 0, this.polynomials, 0, n);    }    /**     * Compute the value for the function.     * <p>     * Throws FunctionEvaluationException if v is outside of the domain of the     * function.  The domain is [smallest knot, largest knot].</p>     * <p>     * See {@link PolynomialSplineFunction} for details on the algorithm for     * computing the value of the function.</p>     *      * @param v the point for which the function value should be computed     * @return the value     * @throws ArgumentOutsideDomainException if v is outside of the domain of     * of the spline function (less than the smallest knot point or greater     * than the largest knot point)     */    public double value(double v) throws ArgumentOutsideDomainException {        if (v < knots[0] || v > knots[n]) {            throw new ArgumentOutsideDomainException(v, knots[0], knots[n]);        }        int i = Arrays.binarySearch(knots, v);        if (i < 0) {            i = -i - 2;        }        //This will handle the case where v is the last knot value        //There are only n-1 polynomials, so if v is the last knot        //then we will use the last polynomial to calculate the value.        if ( i >= polynomials.length ) {            i--;        }        return polynomials[i].value(v - knots[i]);    }        /**     * Returns the derivative of the polynomial spline function as a UnivariateRealFunction     * @return  the derivative function     */    public UnivariateRealFunction derivative() {        return polynomialSplineDerivative();    }        /**     * Returns the derivative of the polynomial spline function as a PolynomialSplineFunction     *      * @return  the derivative function     */    public PolynomialSplineFunction polynomialSplineDerivative() {        PolynomialFunction derivativePolynomials[] = new PolynomialFunction[n];        for (int i = 0; i < n; i++) {            derivativePolynomials[i] = polynomials[i].polynomialDerivative();        }        return new PolynomialSplineFunction(knots, derivativePolynomials);    }    /**     * Returns the number of spline segments = the number of polynomials      * = the number of knot points - 1.     *      * @return the number of spline segments     */    public int getN() {        return n;    }    /**     * Returns a copy of the interpolating polynomials array.     * <p>     * Returns a fresh copy of the array. Changes made to the copy will     * not affect the polynomials property.</p>     *      * @return the interpolating polynomials     */    public PolynomialFunction[] getPolynomials() {        PolynomialFunction p[] = new PolynomialFunction[n];        System.arraycopy(polynomials, 0, p, 0, n);        return p;    }    /**     * Returns an array copy of the knot points.     * <p>     * Returns a fresh copy of the array. Changes made to the copy     * will not affect the knots property.</p>     *      * @return the knot points     */    public double[] getKnots() {        double out[] = new double[n + 1];        System.arraycopy(knots, 0, out, 0, n + 1);        return out;      }    /**     * Determines if the given array is ordered in a strictly increasing     * fashion.     *      * @param x the array to examine.     * @return <code>true</code> if the elements in <code>x</code> are ordered     * in a stricly increasing manner.  <code>false</code>, otherwise.     */    private static boolean isStrictlyIncreasing(double[] x) {        for (int i = 1; i < x.length; ++i) {            if (x[i - 1] >= x[i]) {                return false;            }        }        return true;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -